期刊文献+
共找到385篇文章
< 1 2 20 >
每页显示 20 50 100
Full 3-D numerical modeling of borehole electric image logging and the evaluation model of fracture 被引量:4
1
作者 KE ShiZhen Resource & Information Collage of Chinese Petroleum University,Beijing 102249,China 《Science China Earth Sciences》 SCIE EI CAS 2008年第S2期170-173,共4页
A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the f... A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the formation media model with a single fracture. The effect of changing fracture aperture and resistivity ratio to the logging response is discussed. The identification ability for two parallel fractures is also present. A quantitative evaluation formula of fracture aperture from borehole electric image logging data is set up. A case study of the model well is done to verify the accuracy of the for-mula. The result indicates that the formula is more accurate than the foreign one. 展开更多
关键词 numerical modeling BOREHOLE electric image LOGGING 3-d FEM full SCOPE FRACTURE
原文传递
Automatic gating and riser system design and defect control for K4169 superalloy guide blade casting based on parametric 3D modeling-simulation integrated system
2
作者 Le-chuan Li Ya-jun Yin +4 位作者 Bing-zheng Fan Guo-yan Shui Xiao-yuan Ji Jian-xin Zhou Lei Jin 《China Foundry》 2026年第1期20-30,共11页
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si... Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%. 展开更多
关键词 numerical simulation automatic design investment casting parametric 3D modeling gating and riser system
在线阅读 下载PDF
Meshing effects of the 3-D FEM numerical modeling in seismo-electromagnetics:An application in selectivity of seismic electric signal (SES)
3
作者 Qiao Wang Guangjing Xu Zhanhui Li Qinghua Huang 《Earthquake Science》 CSCD 2011年第6期565-576,共12页
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in... We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results. 展开更多
关键词 3D electromagnetic numerical modeling FEM MESHING SES
在线阅读 下载PDF
Numerical study on residual current and its impact on mass transport in the Hangzhou Bay and the Changjiang Estuary I. A3-D joint model of the Hangzhou Bay and the Changjiang Estuary 被引量:5
4
作者 Zhu Shouxian 1,2 ,Shi Fengyan 1,Zhu Jianrong 1,Ding Pingxing 11 .StateKeyLaboratoryofEstuarineandCoastalResearch ,EastChinaNormalUniversity ,Shanghai 2 0 0 0 6 2 ,China   2.MeteorologyInstituteofthePLAScienceandEngineeringUniversity ,Nanjing 2 11 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2001年第1期1-13,共13页
A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradie... A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary. 展开更多
关键词 3-d numerical model the Hangzhou Bay the Changjiang Estuary baroclinic pressure gradient convective
在线阅读 下载PDF
Numerical simulations of full-wave fi elds and analysis of channel wave characteristics in 3-D coal mine roadway models 被引量:12
5
作者 Yang Si-Tong Wei Jiu-Chuan +2 位作者 Cheng Jiu-Long Shi Long-Qing Wen Zhi-Jie 《Applied Geophysics》 SCIE CSCD 2016年第4期621-630,737,共11页
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ... Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways. 展开更多
关键词 Channel wave 3-d wave field numerical simulation Coal mine roadway Advance detection
在线阅读 下载PDF
Coupled 3D discrete-continuum numerical modeling of pile penetration in sand 被引量:8
6
作者 Jian ZHOU Qi-wei JIAN +1 位作者 Jiao ZHANG Jian-jun GUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第1期44-55,共12页
A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numer... A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method;the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efficiency. 展开更多
关键词 Coupled numerical modeling Discrete-continuum Micro and macro 3D simulation Non-circular particles Pilepenetration mechanism
原文传递
Novel modeling on numerical computing the geo-deformation information in coalmine based on the GIS-Excel 被引量:1
7
作者 杨可明 Wang Libo +3 位作者 Zhang Tao Qian Xiaoli Wang Linwei Liu Shiwen 《High Technology Letters》 EI CAS 2013年第2期156-161,共6页
Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformati... Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area. 展开更多
关键词 numerical simulation mining subsidence fast Langrangian analysis of continua in 3dimensions FLAC3D) modeling geo-deformation information geographic information system (GIS)
在线阅读 下载PDF
3-D physical model in strong ground motion numerical simulation:A case study of Kunming basin
8
作者 张冬丽 徐锡伟 +2 位作者 赵伯明 陈桂华 解廷伟 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第2期194-205,共12页
Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic haz... Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and project construction, while numerical simulation of strong ground motion is an important method for seismic hazard prediction and assessment. A 3-D physical model in conformity with real strata configuration of (mainly) the Quaternary is a prerequisite to ensure the reliability of the simulation results. In this paper, we give a detailed account of the technical scheme and process for creating a 3-D physical model in Kunming basin. The data used are synthe- sized from seismogeological data, borehole data, topographic data, digital elevation mode (DEM) data, seismic exploration results and wave velocity measurements. Strafigraphic division is based mainly on shear wave velocity, with strata sequence taken into consideration. The model construction is finally accomplished with ArcGIS and many relevant programming techniques via layer-by-layer stacking (in depth direction) of the adjacent medium interfaces (meshes). Meanwhile, a database of 3-D physical models is set up, which provides model data and parameters for strong ground motion simulation. Some processing methods and significant issues are also addressed in the paper in accordance with different types of exploration and experimental data. 展开更多
关键词 strong ground motion 3-d physical model QUATERNARY Kunming basin
在线阅读 下载PDF
NUMERICAL MODELLING OF THREE-DIMENSION CHARACTERISTICS OF WIND-DRIVEN CURRENT IN THE BOHAI SEA 被引量:5
9
作者 赵进平 侍茂崇 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1993年第1期70-79,共10页
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based... Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed. 展开更多
关键词 the Bohai Sea- 3-dimension model numerical study WIND-dRIVEN CURRENT
原文传递
3-D Geological Modeling-Concept,Methods and Key Techniques 被引量:19
10
作者 PAN Mao LI Zhaoliang +2 位作者 GAO Zhongbo YANG Yang WU Gengyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第4期1031-1036,共6页
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa... 3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies. 展开更多
关键词 3-d geological modeling geological interpretation methods of modeling quality of models
在线阅读 下载PDF
Application of 3-D Geoscience Modeling Technology for the Estimation of Solid Mineral Reserves 被引量:15
11
作者 PAN Mao LI Jun +1 位作者 WANG Zhangang JIN Jiangjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第3期655-660,共6页
Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g... Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves. 展开更多
关键词 3-d geoscience modeling solid mineral resource estimation of reserves surface modeling property modeling
在线阅读 下载PDF
Loading characteristics of mechanical rib bolts determined through testing and numerical modeling 被引量:6
12
作者 Khaled Mohamed Gamal Rashed Zorica Radakovic-Guzina 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期17-24,共8页
Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance o... Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design. 展开更多
关键词 Coal RIB MECHANICAL BOLT Conventional BOLT Tension BOLT Point-anchored BOLT RIB support PULL-OUT test numerical modeling FLAC3D
在线阅读 下载PDF
Numerical investigation of rock dynamic fragmentation during rockslides using a coupled 3D FEM-DEM method 被引量:2
13
作者 LIU Yang WENG Lei CHU Zhao-fei 《Journal of Mountain Science》 SCIE CSCD 2022年第4期1051-1069,共19页
Rockslides are one of the most common geological hazards in mountainous areas and can pose significant threats to the safety of human lives and infrastructures. Studying the dynamic fragmentation process, and fragment... Rockslides are one of the most common geological hazards in mountainous areas and can pose significant threats to the safety of human lives and infrastructures. Studying the dynamic fragmentation process, and fragment characteristics of rock blocks during rockslides is of great significance. In this study,the influences of the slope angle on the dynamic fragmentation process, damage and energy evolution,and the fragments’ flying velocity and flying angle were systematically investigated using a coupled 3D FEM-DEM method. An improved fragment search algorithm was first proposed to more effectively extract the information of the fragments after impacting. The input parameters in the numerical modeling were carefully calibrated based on the quasi-static uniaxial compression tests and the rockimpact tests. The complex fragmentation process of rock block sliding along an inclined slope was simulated. The results indicate that the fragmentation intensity gradually increases with increasing the slope angle, and the fragmentation intensity of the front region of the rock block is always higher than that of the rear region. Additionally, the slope angle can significantly affect the damage ratio, energy dissipation, and the ratio of tensile crack to shear crack during the rockslides. The number of the fragments having higher flying velocities and larger flying angles increases with increasing the slope angle,which contributes to a larger spreading distance and a wider deposition area. 展开更多
关键词 Rockslides Dynamic fragmentation Fragment characteristics 3D FEM-dEM numerical modelling
原文传递
Real-time 3-D space numerical shake prediction for earthquake early warning 被引量:4
14
作者 Tianyun Wang Xing Jin +1 位作者 Yandan Huang Yongxiang Wei 《Earthquake Science》 CSCD 2017年第5期269-281,共13页
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour... In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model. 展开更多
关键词 Real-time numerical shake prediction· 3-dspace model · Radiative transfer theory · Data assimilation
在线阅读 下载PDF
Benchmarking of two three-dimensional numerical models in time/space domain to predict railway-induced ground vibrations 被引量:2
15
作者 Jesus Fernandez-Ruiz Luis E.Medina Rodriguez +1 位作者 Pedro Alves Costa Margarita Martinez-Diaz 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期245-256,共12页
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa... In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering. 展开更多
关键词 railway vibrations time/space domain 3D numerical model finite difference method implicit finite element method
在线阅读 下载PDF
Aseismic ridge subduction and flat subduction:Insights from three-dimensional numerical models 被引量:1
16
作者 Hui Zhao Wei Leng 《Earth and Planetary Physics》 EI CSCD 2023年第2期269-281,共13页
Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous t... Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru. 展开更多
关键词 flat subduction aseismic ridge oceanic plateau 3-d numerical simulation
在线阅读 下载PDF
3-D modeling of rock burst in pillar No. 19 of Fetr6 chromite mine 被引量:4
17
作者 S. Dehghan K. Shahriar +1 位作者 P. Maarefvand K. Goshtasbi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期237-242,共6页
Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 1... Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described. 展开更多
关键词 Rock burst Stope and pillar 3-d modeling 3Dec Domino effect Faryab mine
在线阅读 下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
18
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D numerical modeling
在线阅读 下载PDF
Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model 被引量:8
19
作者 CUIShu-biao ZHOUHua-min LIDe-qun 《Computer Aided Drafting,Design and Manufacturing》 2004年第2期64-70,共7页
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ... The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed. 展开更多
关键词 injection molding cooling system numerical simulation 3D surface model Boundary Element Method
在线阅读 下载PDF
Numerical modeling calculation for the spatial distribution characteristics of horizontal field transfer functions
20
作者 龚绍京 陈化然 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第6期676-684,共9页
Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part ... Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation. 展开更多
关键词 numerical modeling 3-d finite difference method horizontal field transfer function spatial distribution characteristics
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部