The removal of solid impurities and separation of target products from a fermentation broth is becoming more tedious with the utilization of lignocelluloses as source of substrate.2,3-Butanediol,an important chemical ...The removal of solid impurities and separation of target products from a fermentation broth is becoming more tedious with the utilization of lignocelluloses as source of substrate.2,3-Butanediol,an important chemical used widely is also a main product of sugar-based fermentation carried out by Klebsiella pneumoniae.In this study,we investigated the use of salting-out extraction(SOE) that employed a K2HPO4/ethanol system consisting of 21% ethanol and 17% K2HPO4(mass fraction) to separate 2,3-butanediol from the viscous Jerusalem artichoke-based fermentation broth.After SOE,about 98% of solid matters was removed,and the viscosity decreased from 72.5 mPa s in the original fermentation broth to 4.4 mPa s in the top phase.The partition coefficient and yield of 2,3-butanediol reached 13.4 and 99%,respectively,and 89% of soluble proteins was removed from the broth.The results showed that SOE is an efficient way for isolating 2,3-BD from a highly viscous fermentation broth by removing much of the solid matters within the broth.展开更多
The production of 2,3-butanediol by Klebsiella pneumoniae from glucose supplemented with different salts was studied. A suitable medium composition was defined by response surface experiments. In a medium containing g...The production of 2,3-butanediol by Klebsiella pneumoniae from glucose supplemented with different salts was studied. A suitable medium composition was defined by response surface experiments. In a medium containing glu-cose and (NH4)2HPO4, the strain could convert 137.0g of glucose into 52.4g of 2,3-butanediol and 8.4g of acetoin in shaking flasks. The diol yield amounted to 90% of its theoretical value and the productivity was 1—1.5g·L-1·h-1. In fed-batch fermentation, the yield and productivity of diol were further enhanced by maintaining the pH at 6.0. Up to 92.4g of 2,3-butanediol and 13.1g of acetoin per liter were obtained from 215.0g of glucose per liter. The diol yield reached 98% of its theoretical value and the productivity was up to 2.1g·L-1·h-1.展开更多
A new industrial production method of 2, 3-butanediol is discussed in this paper. C2-4 bio-polyol is prepared by combining biological fermentation and chemical cleavage, with corn starch as raw material. In this indus...A new industrial production method of 2, 3-butanediol is discussed in this paper. C2-4 bio-polyol is prepared by combining biological fermentation and chemical cleavage, with corn starch as raw material. In this industrial method, high purity 2,3-butanediol can be obtained after distillation and purification. Low production cost of this method provides an effective support for 2, 3-butanediol large-scaled application.展开更多
(R)-1,3-butanediol is an important pharmaceutical intermediate, and the synthesis of(R)-1,3-butanediol using green biological methods has recently been of interest for industrial application. Here, a novel strain QC-1...(R)-1,3-butanediol is an important pharmaceutical intermediate, and the synthesis of(R)-1,3-butanediol using green biological methods has recently been of interest for industrial application. Here, a novel strain QC-1 that efficiently transforms 4-hydroxy-2-butanone to(R)-1,3-butanediol was isolated from soil samples. Based on morphological, physiological, and biochemical tests and 5.8 S-internal transcribed spacer sequencing, the strain was identified as Pichia kudriavzevii QC-1. The reaction conditions were optimized to 35 ℃, pH 8.0, rotation speed 200 rpm, and 6:5 mass ratio of glucose to 4-hydroxy-2-butanone. Evaluation of the effects of 4-hydroxy-2-butanone concentrations on yield and cell survival rate showed that 85.60 g·L^-1 product accumulated, with an enantiomeric excess of more than 99%, when 30 g·L^-14-hydroxy-2-butanone was added at 0, 10, and 30 h in a 3-L bioreactor. Thus, strain QC-1 showed excellent catalytic activity and stereoselectivity for the synthesis of(R)-1,3-butanediol from 4-hydroxy-2-butanone.展开更多
The production and recovery of 2,3-butanediol(BDO)through biodiesel derived glycerol valorization by Klebsiella oxytoca ACA-DC 1581 was holistically optimized with regard to the efficiency and cost of the bioprocess.T...The production and recovery of 2,3-butanediol(BDO)through biodiesel derived glycerol valorization by Klebsiella oxytoca ACA-DC 1581 was holistically optimized with regard to the efficiency and cost of the bioprocess.The absence of thermal treatment of the substrate had no negative effect upon the growth of microorganism and the bioconversion of crude glycerol into BDO,enabling the development of a non-aseptic and lower-cost bioprocess.Both digestate and corn steep liquor(CSL),the main by-products of the biogas and corn industries respectively,successfully served as the sole source of nitrogen,contributing to the complete replacement of more expensive sources(e.g.,yeast extract).The biochemical pathway of glycerol catabolism was examined under varying concentrations of dissolved oxygen and BDO production was optimized in a fully aerobic environment(volumetric mass transfer coefficient;kLa=70.51/h.)The glycerol consumption rate was 2.80 g/L/h,the BDO productivity reached 1.12 g/L/h and the yield of BDO produced per unit of glycerol consumed was 0.46 g/g,with these values being among the highest ones reported in the literature for wild-type strains cultivated on crude glycerol.In all fed-batch fermentations,final BDO and acetoin concentration reached~80 g/L,while a plateau was observed at~68 g/L of BDO.Finally,the culture was carried out efficiently in the pilot-scale reactor(250 L).The salting-out extraction(SOE),consisting of ethanol(24%)and K2HPO4(25%),recovered 91.7%of BDO from the fermentation medium and was studied for the first time in a glycerol-based medium.The study suggests the potential industrialization of the bioprocess through sustainable,pilot-scale and low-cost bioconversion of biodiesel-derived crude glycerol and CSL or digestate into BDO.展开更多
[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表...[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。展开更多
基金Supported by the National High Technology Research and Development Program of China (2009AA05Z443)
文摘The removal of solid impurities and separation of target products from a fermentation broth is becoming more tedious with the utilization of lignocelluloses as source of substrate.2,3-Butanediol,an important chemical used widely is also a main product of sugar-based fermentation carried out by Klebsiella pneumoniae.In this study,we investigated the use of salting-out extraction(SOE) that employed a K2HPO4/ethanol system consisting of 21% ethanol and 17% K2HPO4(mass fraction) to separate 2,3-butanediol from the viscous Jerusalem artichoke-based fermentation broth.After SOE,about 98% of solid matters was removed,and the viscosity decreased from 72.5 mPa s in the original fermentation broth to 4.4 mPa s in the top phase.The partition coefficient and yield of 2,3-butanediol reached 13.4 and 99%,respectively,and 89% of soluble proteins was removed from the broth.The results showed that SOE is an efficient way for isolating 2,3-BD from a highly viscous fermentation broth by removing much of the solid matters within the broth.
文摘The production of 2,3-butanediol by Klebsiella pneumoniae from glucose supplemented with different salts was studied. A suitable medium composition was defined by response surface experiments. In a medium containing glu-cose and (NH4)2HPO4, the strain could convert 137.0g of glucose into 52.4g of 2,3-butanediol and 8.4g of acetoin in shaking flasks. The diol yield amounted to 90% of its theoretical value and the productivity was 1—1.5g·L-1·h-1. In fed-batch fermentation, the yield and productivity of diol were further enhanced by maintaining the pH at 6.0. Up to 92.4g of 2,3-butanediol and 13.1g of acetoin per liter were obtained from 215.0g of glucose per liter. The diol yield reached 98% of its theoretical value and the productivity was up to 2.1g·L-1·h-1.
文摘A new industrial production method of 2, 3-butanediol is discussed in this paper. C2-4 bio-polyol is prepared by combining biological fermentation and chemical cleavage, with corn starch as raw material. In this industrial method, high purity 2,3-butanediol can be obtained after distillation and purification. Low production cost of this method provides an effective support for 2, 3-butanediol large-scaled application.
基金Financial supports from the National Key R&D Program of China(2018YFC1604100)the National Natural Science Foundation of China(NSFC)[21676120,31872891]+8 种基金the 111 Project[111-2-06]the Highend Foreign Experts Recruitment Program[G20190010083]the Program for Advanced Talents within Six Industries of Jiangsu Province[2015-NY007]the National Program for Support of Top-notch Young Professionalsthe Fundamental Research Funds for the Central Universities[JUSRP51504]the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsTop-notch Academic Programs Project of Jiangsu Higher Education Institutionsthe Jiangsu Province“Collaborative Innovation Center for Advanced Industrial Fermentation”Industry Development Programthe National First-Class Discipline Program of Light Industry Technology and Engineering[LITE2018-09]。
文摘(R)-1,3-butanediol is an important pharmaceutical intermediate, and the synthesis of(R)-1,3-butanediol using green biological methods has recently been of interest for industrial application. Here, a novel strain QC-1 that efficiently transforms 4-hydroxy-2-butanone to(R)-1,3-butanediol was isolated from soil samples. Based on morphological, physiological, and biochemical tests and 5.8 S-internal transcribed spacer sequencing, the strain was identified as Pichia kudriavzevii QC-1. The reaction conditions were optimized to 35 ℃, pH 8.0, rotation speed 200 rpm, and 6:5 mass ratio of glucose to 4-hydroxy-2-butanone. Evaluation of the effects of 4-hydroxy-2-butanone concentrations on yield and cell survival rate showed that 85.60 g·L^-1 product accumulated, with an enantiomeric excess of more than 99%, when 30 g·L^-14-hydroxy-2-butanone was added at 0, 10, and 30 h in a 3-L bioreactor. Thus, strain QC-1 showed excellent catalytic activity and stereoselectivity for the synthesis of(R)-1,3-butanediol from 4-hydroxy-2-butanone.
基金funded by the project entitled“Biotechnological conversion of crude glycerol into high added-value microbial products through green and sustainable technologies”(Acronym:Green_-glycerol_conversions,project codeΤ2ЕΔΚ-01482)financed by the Ministry of National Education and Religious Affairs,Greece(project action:“Investigate-Create-Innovate 2014-2020,2nd cycle).
文摘The production and recovery of 2,3-butanediol(BDO)through biodiesel derived glycerol valorization by Klebsiella oxytoca ACA-DC 1581 was holistically optimized with regard to the efficiency and cost of the bioprocess.The absence of thermal treatment of the substrate had no negative effect upon the growth of microorganism and the bioconversion of crude glycerol into BDO,enabling the development of a non-aseptic and lower-cost bioprocess.Both digestate and corn steep liquor(CSL),the main by-products of the biogas and corn industries respectively,successfully served as the sole source of nitrogen,contributing to the complete replacement of more expensive sources(e.g.,yeast extract).The biochemical pathway of glycerol catabolism was examined under varying concentrations of dissolved oxygen and BDO production was optimized in a fully aerobic environment(volumetric mass transfer coefficient;kLa=70.51/h.)The glycerol consumption rate was 2.80 g/L/h,the BDO productivity reached 1.12 g/L/h and the yield of BDO produced per unit of glycerol consumed was 0.46 g/g,with these values being among the highest ones reported in the literature for wild-type strains cultivated on crude glycerol.In all fed-batch fermentations,final BDO and acetoin concentration reached~80 g/L,while a plateau was observed at~68 g/L of BDO.Finally,the culture was carried out efficiently in the pilot-scale reactor(250 L).The salting-out extraction(SOE),consisting of ethanol(24%)and K2HPO4(25%),recovered 91.7%of BDO from the fermentation medium and was studied for the first time in a glycerol-based medium.The study suggests the potential industrialization of the bioprocess through sustainable,pilot-scale and low-cost bioconversion of biodiesel-derived crude glycerol and CSL or digestate into BDO.
文摘[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。
基金国家自然科学基金联合基金项目(U21A20485)浙江省高等教育“十四五”本科教育教学改革项目(jg20220019)+3 种基金浙江省产学合作协同育人项目(202018)浙江大学2023年度本科教学创新实践项目重点项目(202309)浙江省基础公益研究计划项目(LGG22F030008)浙江大学第一批AI For Education系列实证教学研究项目(202402)。