Enhanced inflammatory response and oxidative stress cause acute lung injury(ALI). Controlling inflammation and oxidation can ameliorate ALI. In the present study, we aimed to determine whether 3,4-Dihydroxyacetophenon...Enhanced inflammatory response and oxidative stress cause acute lung injury(ALI). Controlling inflammation and oxidation can ameliorate ALI. In the present study, we aimed to determine whether 3,4-Dihydroxyacetophenone(compound 1)could ameliorate lipopolysaccharide(LPS)-induced ALI by suppressing inflammation and oxidation. In this study, compound 1 reduced LPS-induced inflammatory cytokines and oxidative stress in RAW 264.7 cells. Moreover, compound 1 suppressed the expression of inflammatory protein p65, inhibited IkBα phosphorylation, decreased the nuclear translocation of p65, and increased the expressions of anti-oxidative protein nuclear factor erythroid 2-related factor 2(Nrf-2) and heme oxygenase-1(HO-1), which was reduced by LPS, in leukemia cells in mouse macrophage(RAW 264.7) cells. Furthermore, compound 1 could also ameliorate LPS-induced ALI in vivo, with a reduction of inflammatory cytokines, oxidative stress, and nuclear factor-kappa B(NF-κB)signaling pathway activation. This study emphasized the anti-inflammatory and anti-oxidative activities of compound 1, which could be a valuable therapeutic agent against ALI.展开更多
建立了一种在温和条件下,用可见光催化合成一系列3,4-二氢异喹啉-1(2H)-酮及其衍生物的方法。该方法在室温条件下,以2-烯丙基-N-甲氧基苯甲酰胺为模板底物,以碘化钾作为光催化剂,25 W 460 nm的蓝色LED灯照射下,合成一系列3,4-二氢异喹啉...建立了一种在温和条件下,用可见光催化合成一系列3,4-二氢异喹啉-1(2H)-酮及其衍生物的方法。该方法在室温条件下,以2-烯丙基-N-甲氧基苯甲酰胺为模板底物,以碘化钾作为光催化剂,25 W 460 nm的蓝色LED灯照射下,合成一系列3,4-二氢异喹啉-1(2H)-酮衍生物,最高产率可达到83%。该合成路径具有底物适用范围广、经济实用等特点,为3,4-二氢异喹啉-1(2H)-酮衍生物合成提供了一种经济简便的方法。展开更多
The synthesis of functionalized rubber copolymers is a topic of great research interest.In this study,we present a novel approach for the direct construction ofα-functionalized 3,4-polyisoprene through polymerization...The synthesis of functionalized rubber copolymers is a topic of great research interest.In this study,we present a novel approach for the direct construction ofα-functionalized 3,4-polyisoprene through polymerization of polar monomers and isoprene monomer.Theα-functionalized 3,4-polyisoprene was successfully synthesized via in situ sequential polymerization using the iron-based catalytic system(Fe(acac)_(3)/IITP/AliBu_(3)),exhibiting high activity and resistance to polar monomers without requiring protection of polar groups.The structure ofα-functionalized 3,4-polyisoprene was confirmed by proton nuclear magnetic resonance spectroscopy(^(1)H-NMR)and two-dimensional diffusion-ordered spectroscopy(2D DOSY)spectra analysis.The introduction of polar groups,particularly hydroxyl groups,enhanced the hydrophilicity of the copolymer.This was evidenced by a decrease in the water contact angle from 106.9°to 96.4°with increasing hydroxyl content in the copolymer.展开更多
基金National Natural Science Foundation of China (Grant No. 82003755)the Medical Technology Program of Ningbo (Grant No. 2019Y07)。
文摘Enhanced inflammatory response and oxidative stress cause acute lung injury(ALI). Controlling inflammation and oxidation can ameliorate ALI. In the present study, we aimed to determine whether 3,4-Dihydroxyacetophenone(compound 1)could ameliorate lipopolysaccharide(LPS)-induced ALI by suppressing inflammation and oxidation. In this study, compound 1 reduced LPS-induced inflammatory cytokines and oxidative stress in RAW 264.7 cells. Moreover, compound 1 suppressed the expression of inflammatory protein p65, inhibited IkBα phosphorylation, decreased the nuclear translocation of p65, and increased the expressions of anti-oxidative protein nuclear factor erythroid 2-related factor 2(Nrf-2) and heme oxygenase-1(HO-1), which was reduced by LPS, in leukemia cells in mouse macrophage(RAW 264.7) cells. Furthermore, compound 1 could also ameliorate LPS-induced ALI in vivo, with a reduction of inflammatory cytokines, oxidative stress, and nuclear factor-kappa B(NF-κB)signaling pathway activation. This study emphasized the anti-inflammatory and anti-oxidative activities of compound 1, which could be a valuable therapeutic agent against ALI.
文摘建立了一种在温和条件下,用可见光催化合成一系列3,4-二氢异喹啉-1(2H)-酮及其衍生物的方法。该方法在室温条件下,以2-烯丙基-N-甲氧基苯甲酰胺为模板底物,以碘化钾作为光催化剂,25 W 460 nm的蓝色LED灯照射下,合成一系列3,4-二氢异喹啉-1(2H)-酮衍生物,最高产率可达到83%。该合成路径具有底物适用范围广、经济实用等特点,为3,4-二氢异喹啉-1(2H)-酮衍生物合成提供了一种经济简便的方法。
基金financially supported by the National Key R&D Program of China(No.2022YFB3704701)the National Key R&D Program of China(No.2022YFC2603502)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2022QE271)the financial support from the Taishan Scholars Program(No.tsqn202211165)。
文摘The synthesis of functionalized rubber copolymers is a topic of great research interest.In this study,we present a novel approach for the direct construction ofα-functionalized 3,4-polyisoprene through polymerization of polar monomers and isoprene monomer.Theα-functionalized 3,4-polyisoprene was successfully synthesized via in situ sequential polymerization using the iron-based catalytic system(Fe(acac)_(3)/IITP/AliBu_(3)),exhibiting high activity and resistance to polar monomers without requiring protection of polar groups.The structure ofα-functionalized 3,4-polyisoprene was confirmed by proton nuclear magnetic resonance spectroscopy(^(1)H-NMR)and two-dimensional diffusion-ordered spectroscopy(2D DOSY)spectra analysis.The introduction of polar groups,particularly hydroxyl groups,enhanced the hydrophilicity of the copolymer.This was evidenced by a decrease in the water contact angle from 106.9°to 96.4°with increasing hydroxyl content in the copolymer.