Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal str...Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.展开更多
Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency d...Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.展开更多
The double-phase-shift filtering method,which is based on the traditional purephase-shift filtering method,is a novel approach to harmonic elimination that can be applied to more complicated signals such as white nois...The double-phase-shift filtering method,which is based on the traditional purephase-shift filtering method,is a novel approach to harmonic elimination that can be applied to more complicated signals such as white noise and slip-sweep.Nonetheless,any type of phase-shift filtering method necessitates a relationship between the frequency of fundamental sweep and time,which may cost necessitate an enormous amount of human and physical resources to achieve inaccurate results with low efficiency.This paper combines deep learning with harmonic elimination to produce a double-phase-shift filtering method based on AR2UNet,a type of U-Net with attention gates structure and recurrent residual blocks for improving accuracy and function while simplifying computational complexity.The input of the AR2UNet structure in this paper is seismic data of slip-sweep signals in vibroseis,and the output is signal frequency variation with the time of the fundamental waves,which are required to eliminate the harmonic waves and adjacent signals using a double-phase-shift method to obtain the fundamental sweep.The training sets and test sets are formed by forward models,and a Log-Cosh loss function is used to monitor the process,during which the results of AR2U-Net and traditional U-Net are compared to demonstrate the eminent function of AR2UNet.Following that,the outcomes’Log-Cosh loss functions and accuracy are also compared to validate the conclusion.AR2U-Net,when applied to raw data and combined with the doublephase-shift method,tends to polish the filtering effects and is worth promoting.展开更多
In the present paper, the authors study totally real 2-harmonic submanifolds in a quasi constant holomorphic sectional curvature space and obtain a Simons' type inte- gral inequality of compact submanifoids as well a...In the present paper, the authors study totally real 2-harmonic submanifolds in a quasi constant holomorphic sectional curvature space and obtain a Simons' type inte- gral inequality of compact submanifoids as well as some pinching theorems on'the second fundamental form.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
An increase in crop intensity could improve crop yield but may also lead to a series of environmental problems, such as depletion of ground water and increased soil salinity. The generation of high resolution(30 m) cr...An increase in crop intensity could improve crop yield but may also lead to a series of environmental problems, such as depletion of ground water and increased soil salinity. The generation of high resolution(30 m) crop intensity maps is an important method used to monitor these changes, but this is challenging because the temporal resolution of the 30-m image time series is low due to the long satellite revisit period and high cloud coverage. The recently launched Sentinel-2 satellite could provide optical images at 10–60 m resolution and thus improve the temporal resolution of the 30-m image time series. This study used harmonized Landsat Sentinel-2(HLS) data to identify crop intensity. The sixth polynomial function was used to fit the normalized difference vegetation index(NDVI) and enhanced vegetation index(EVI) curves. Then, 15-day NDVI and EVI time series were then generated from the fitted curves and used to generate the extent of croplands. Lastly, the first derivative of the fitted VI curves were used to calculate the VI peaks;spurious peaks were removed using artificially defined thresholds and crop intensity was generated by counting the number of remaining VI peaks. The proposed methods were tested in four study regions, with results showing that 15-day time series generated from the fitted curves could accurately identify cropland extent. Overall accuracy of cropland identification was higher than 95%. In addition, both the harmonized NDVI and EVI time series identified crop intensity accurately as the overall accuracies, producer’s accuracies and user’s accuracies of non-cropland, single crop cycle and double crop cycle were higher than 85%. NDVI outperformed EVI as identifying double crop cycle fields more accurately.展开更多
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t...Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
To determine the prevalence of metabolic syndrome (MetS) in Malaysian type 2 diabetic patients using WHO, NCEP ATP III, IDF and the new Harmonized definitions, and the concordance between these definitions. This study...To determine the prevalence of metabolic syndrome (MetS) in Malaysian type 2 diabetic patients using WHO, NCEP ATP III, IDF and the new Harmonized definitions, and the concordance between these definitions. This study involved 313 patients diagnosed with type 2 diabetes mellitus (T2DM) at two Malaysian tertiary hospitals. Socio-demographic data were assessed using a pre-tested interviewer-administered structured questionnaire. Anthropometric measurements were carried out according to standard protocols. Clinical and laboratory characteristics were examined. Kappa (k) statistics were used for the agreement between the four MetS definitions. The overall prevalence rates of MetS (95% CI) were 95.8% (93.6-98.1), 96.1% (94.0-98.3), 84.8% (80.8-88.9) and 97.7% (96.1-99.4) according to the WHO, NCEP ATP III, IDF and the Harmonized definitions, respectively. The Kappa statistics demonstrated a slight to substantial agreement between the definitions (k = 0.179-0.875, p k = 0.875, p hest specificity (100%) in identifying MetS. In conclusion, the new Harmonized criteria established the highest prevalence of MetS among the four definitions applied. There was a very good concordance between the WHO and NCEP ATP III criteria. The extremely high prevalence of MetS observed in type 2 diabetic patients indicates an impending pandemic of CVD risk in Malaysia. Aggressive treatment of MetS components is required to reduce cardiovascular risk in T2DM.展开更多
基金Project supported by the National Innovative Training Program for College Students of China(Grant No.2023069)the University Research and Innovation Project of the National University of Defense Technology。
文摘Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.
文摘Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05003-003).
文摘The double-phase-shift filtering method,which is based on the traditional purephase-shift filtering method,is a novel approach to harmonic elimination that can be applied to more complicated signals such as white noise and slip-sweep.Nonetheless,any type of phase-shift filtering method necessitates a relationship between the frequency of fundamental sweep and time,which may cost necessitate an enormous amount of human and physical resources to achieve inaccurate results with low efficiency.This paper combines deep learning with harmonic elimination to produce a double-phase-shift filtering method based on AR2UNet,a type of U-Net with attention gates structure and recurrent residual blocks for improving accuracy and function while simplifying computational complexity.The input of the AR2UNet structure in this paper is seismic data of slip-sweep signals in vibroseis,and the output is signal frequency variation with the time of the fundamental waves,which are required to eliminate the harmonic waves and adjacent signals using a double-phase-shift method to obtain the fundamental sweep.The training sets and test sets are formed by forward models,and a Log-Cosh loss function is used to monitor the process,during which the results of AR2U-Net and traditional U-Net are compared to demonstrate the eminent function of AR2UNet.Following that,the outcomes’Log-Cosh loss functions and accuracy are also compared to validate the conclusion.AR2U-Net,when applied to raw data and combined with the doublephase-shift method,tends to polish the filtering effects and is worth promoting.
基金Foundation item: Supported by the National Natural Science Foundation of China(ll071005) Supported by the Natural Science Foundation of Anhui Province Education Department(KJ2008A05zC)
文摘In the present paper, the authors study totally real 2-harmonic submanifolds in a quasi constant holomorphic sectional curvature space and obtain a Simons' type inte- gral inequality of compact submanifoids as well as some pinching theorems on'the second fundamental form.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金supported by the China Postdoctoral Science Foundation (2017M620075 and BX201700286)the National Natural Science Foundation of China (NSFC-61661136006)
文摘An increase in crop intensity could improve crop yield but may also lead to a series of environmental problems, such as depletion of ground water and increased soil salinity. The generation of high resolution(30 m) crop intensity maps is an important method used to monitor these changes, but this is challenging because the temporal resolution of the 30-m image time series is low due to the long satellite revisit period and high cloud coverage. The recently launched Sentinel-2 satellite could provide optical images at 10–60 m resolution and thus improve the temporal resolution of the 30-m image time series. This study used harmonized Landsat Sentinel-2(HLS) data to identify crop intensity. The sixth polynomial function was used to fit the normalized difference vegetation index(NDVI) and enhanced vegetation index(EVI) curves. Then, 15-day NDVI and EVI time series were then generated from the fitted curves and used to generate the extent of croplands. Lastly, the first derivative of the fitted VI curves were used to calculate the VI peaks;spurious peaks were removed using artificially defined thresholds and crop intensity was generated by counting the number of remaining VI peaks. The proposed methods were tested in four study regions, with results showing that 15-day time series generated from the fitted curves could accurately identify cropland extent. Overall accuracy of cropland identification was higher than 95%. In addition, both the harmonized NDVI and EVI time series identified crop intensity accurately as the overall accuracies, producer’s accuracies and user’s accuracies of non-cropland, single crop cycle and double crop cycle were higher than 85%. NDVI outperformed EVI as identifying double crop cycle fields more accurately.
基金Project supported by the Sichuan Science and Technology Program(Grant No.2019YJ0530)Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)the National Natural Science Foundation of China(Grant No.61205079).
文摘Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘To determine the prevalence of metabolic syndrome (MetS) in Malaysian type 2 diabetic patients using WHO, NCEP ATP III, IDF and the new Harmonized definitions, and the concordance between these definitions. This study involved 313 patients diagnosed with type 2 diabetes mellitus (T2DM) at two Malaysian tertiary hospitals. Socio-demographic data were assessed using a pre-tested interviewer-administered structured questionnaire. Anthropometric measurements were carried out according to standard protocols. Clinical and laboratory characteristics were examined. Kappa (k) statistics were used for the agreement between the four MetS definitions. The overall prevalence rates of MetS (95% CI) were 95.8% (93.6-98.1), 96.1% (94.0-98.3), 84.8% (80.8-88.9) and 97.7% (96.1-99.4) according to the WHO, NCEP ATP III, IDF and the Harmonized definitions, respectively. The Kappa statistics demonstrated a slight to substantial agreement between the definitions (k = 0.179-0.875, p k = 0.875, p hest specificity (100%) in identifying MetS. In conclusion, the new Harmonized criteria established the highest prevalence of MetS among the four definitions applied. There was a very good concordance between the WHO and NCEP ATP III criteria. The extremely high prevalence of MetS observed in type 2 diabetic patients indicates an impending pandemic of CVD risk in Malaysia. Aggressive treatment of MetS components is required to reduce cardiovascular risk in T2DM.