期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three‑Dimensionally Conductive MOF Network for Gas and Pressure Sensing
1
作者 Qingqing Zhou Qihang Ding +8 位作者 Zixun Geng Chencheng Hu Long Yang Zitong Kan Biao Dong Miae Won Hongwei Song Lin Xu Jong Seung Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期601-620,共20页
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f... The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis. 展开更多
关键词 Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2)composites NO_(2)/pressure flexible sensors Health-monitoring Machine learning
在线阅读 下载PDF
Microstructure and properties of Cu-TiB_(2) composites prepared by mechanical stirring-assisted double-melt in-situ reaction
2
作者 Tao Zhou Xu Wang +7 位作者 Liu-Xin Qin Yan-Bin Jiang Meng Wang Yan-Jun Ding Bai-Rui Qi Zhu Xiao Yan-Lin Jia Zhou Li 《Rare Metals》 2025年第2期1342-1362,共21页
A novel mechanical stirring-assisted double-melt in-situ reaction casting process was developed to prepare Cu-1TiB2(wt%)composites.The effects of preparation parameters(melting reaction temperature,stirring rate and s... A novel mechanical stirring-assisted double-melt in-situ reaction casting process was developed to prepare Cu-1TiB2(wt%)composites.The effects of preparation parameters(melting reaction temperature,stirring rate and stirring time)on the microstructure and properties of Cu-1TiB2 composites were investigated.The melt viscosity and particle motion during stirring process were analyzed.The strong turbulence and shear effects generated by mechanical stirring in the melt not only significantly improve the particle distribution but also contribute to adequate in-situ reactions and precise control of the chemical composition.The optimal preparation parameters were 1200℃,a stirring rate of 100 r·min^(−1) and a stirring time of 1 min.Combined with the cold rolling process,the tensile strength,elongation and electrical conductivity of the composite reached 475 MPa,6.0%and 88.4%IACS,respectively,which were significantly better than the composite prepared by manual stirring.The good plasticity is attributed to the uniform distribution of TiB_(2) particles,effectively retarding the crack propagation.The dispersion of particles promotes heterogeneous nucleation of Cu matrix and inhibits grain growth.On the other hand,dispersed particles contribute to grain shear fracture and dislocation multiplication during cold deformation.Therefore,the composite achieves higher dislocation strengthening and grain boundary strengthening. 展开更多
关键词 Stir casting In-situ reaction Microstructure Cu-TiB_(2)composites Mechanical properties
原文传递
Microstructure Modification for Cu–TiB_(2) Composites by Ultrasonic Power‑Assisted in Situ Casting
3
作者 Zhifeng Liu Siruo Zhang +7 位作者 Longjian Li Zhirou Zhang Zongning Chen Ying Fu Huijun Kang Zhiqiang Cao Enyu Guo Tongmin Wang 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1765-1776,共12页
Ultrasonic vibration treatment(UVT)at varying power was successfully applied to the Cu–TiB_(2) composite melt using a SiAlON ceramic sonotrode.The results indicate that TiB_(2) particles are more evenly dispersed in ... Ultrasonic vibration treatment(UVT)at varying power was successfully applied to the Cu–TiB_(2) composite melt using a SiAlON ceramic sonotrode.The results indicate that TiB_(2) particles are more evenly dispersed in the Cu matrix with increasing ultrasonic power,leading to improved mechanical properties of as-cast composites(≤1000 W).With 1000 W UVT,the distribution of TiB_(2) particles becomes the remarkably uniform and well dispersed,with the size of TiB_(2) particle aggregates decreasing from~50μm without UVT to~5μm.The ultimate tensile strength,yield strength,and elongation of the as-cast composite are 201 MPa,85 MPa,and 28.6%,respectively,representing increases of 21.1%,27.3%,and 43%,respectively,compared to the as-cast composite without UVT.However,when the power is increased to 1500 W,thermal efects are likely to emerge,and the ultrasonic attenuation efect is enhanced,resulting in the re-agglomeration of TiB_(2) particles and a deterioration in performance.By quantitatively analyzing the relationships between sound pressure(Pk),sound energy density(I),sound pulse velocity(V),and ultrasonic power,the infuence mechanism of ultrasonic power on the composite microstructure has been further elucidated and characterized.This study provides crucial guidance for the industrial application of UVT in the fabrication of Cu matrix composites. 展开更多
关键词 Ultrasonic vibration treatment Cu-TiB_(2)composites Microstructure Mechanical properties
原文传递
High-Performance Stretchable Gallium Battery for Wearable Electronics,Through Synthesis of Foam Electrodes
4
作者 Elahe Parvini Abdollah Hajalilou +2 位作者 Manuel Reis Carneiro Pedro Alhais Lopes Mahmoud Tavakoli 《Energy & Environmental Materials》 2025年第4期80-86,共7页
The demand for sustainable and stretchable thin-film printed batteries for bioelectronics,wearables,and e-textiles is rapidly increasing.Recently,we developed a fully 3D-printed soft-matter thin-film Ga-Ag_(2)O batter... The demand for sustainable and stretchable thin-film printed batteries for bioelectronics,wearables,and e-textiles is rapidly increasing.Recently,we developed a fully 3D-printed soft-matter thin-film Ga-Ag_(2)O battery with 3R characteristics:resilient to mechanical strain,repairable after damage,and recyclable.This battery achieved a record-breaking areal capacity of 26.37 mAh cm-2,increasing to 30.32 mAh cm^(-2) after 10 cycles under 100%strain.This performance stems from the synergistic effects of gallium’s liquid metal properties and the styrene-isoprene-styrene polymer in the anode.Gallium’s high specific capacity(1153.2 mAh g^(-1)),deformability,and self-healing abilities,supported by its supercooled liquid phase,significantly enhance the battery’s resilience and efficiency.However,the cathode’s lower theoretical capacity,due to Ag_(2)O(231.31 mAh g^(-1)),remains a limitation.Traditional Ag_(2)O-carbon black-styrene-isoprene-styrene cathodes experience rapid capacity decay as only the surface area of the active materials interacts with the electrolyte.To overcome this,we designed a carbon-filled Ag_(2)O foam electrode using a sacrificial sugar template,increasing the effective surface area.This optimization enhanced ion-exchange efficiency,specific capacity,and cyclability,achieving a specific capacity of 221.16 mAh g^(-1).Consequently,the Ga-Ag_(2)O stretchable battery attained a record areal capacity of 40.91 mAh cm^(-2)—double that of nonfoam electrodes—and exhibited fivefold improved charge-discharge cycles.Using ultrastretchable Ag-EGaIn-styrene-isoprene-styrene and carbon black-styrene-isoprene-styrene current collectors,the battery’s specific capacity increased by 33%under 50%strain.Integrated into a soft-matter smart wristband for temperature monitoring,the battery demonstrated its promise for wearable electronics. 展开更多
关键词 Ag2O-CB-SIS composite electrochemical performance foam fabrication liquid metal battery porous electrode materials
在线阅读 下载PDF
Comparative Study of MnO_(2)and Fe_(2)O_(3)Composites on Toona ciliata-Derived Carbon for Sustainable Supercapacitor Applications
5
作者 Dibyashree Shrestha 《Journal of Environmental & Earth Sciences》 2025年第7期240-259,共20页
Unmanaged wood waste,particularly in countries like Nepal,presents serious environmental concerns due to open burning and improper disposal,leading to carbon emissions,air pollution and land degradation.This study int... Unmanaged wood waste,particularly in countries like Nepal,presents serious environmental concerns due to open burning and improper disposal,leading to carbon emissions,air pollution and land degradation.This study introduces an environmentally sustainable strategy to upcycle Toona ciliata wood scrap—an abundant and underutilized lignocellulosic biomass—into high performance carbon electrodes for green energy storage applications.Activated carbon(TCWAC)was synthesized via single-step pyrolytic carbonization followed by phosphoric acid activation,yielding a material with high specific surface area,hierarchical porosity,and excellent electrical conductivity.Electrochemical measurements using a three-electrode configuration in 6 M KOH revealed optimized potential windows of -1.0 to -0.2 V(TCWAC),-1.2 to 0 V(TCWAC-Mn),and -1.15 to -0.4 V(TCWAC-Fe).TCWAC exhibited a specific capacitance of 156.3 Fg^(-1)at 1 Ag^(-1),with an energy density of 3.5 Whkg^(-1),and 80.2% capacity retention after 1000 charge-discharge cycles.Composites with MnO_(2)and Fe_(2)O_(3)were also evaluated.TWAC-Mn delivered 489.4 Fg^(-1),25.1 Whkg^(-1),and 99.1% retention,whereas,TWAC-Fe achieved 321.3 Fg^(-1),6.3 Whkg^(-1),and 90.3% retention.The superior performance of MnO_(2)is attributed to its multiple oxidation states,facilitating reversible faradaic redox and enhanced pseudocapacitance.This work offers the first direct,systematic comparison of MnO_(2)and Fe_(2)O_(3)composites on a common biomass-carbon matrix under identical synthesis and testing conditions.The finding provides mechanistic insight into charge storage behaviour and demonstrate a scalable route for converting biomass waste into sustainable electrode materials,contributing to cleaner energy solutions and improved biomass valorization. 展开更多
关键词 Toona ciliata Wood Scrap Activated Carbon Electrodes SUPERCAPACITOR MnO_(2)Composites Fe_(2)O_(3)Composites Sustainable Energy Storage
在线阅读 下载PDF
Synergistic SERS effects in organic/MoS_(2) heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection
6
作者 Liqi Ma Abdur Rahim +5 位作者 Baiju Lü Muhammad Saleem Xiaoyu Zhang Mingyue Li Muhammad Zahid Mei Liu 《Chinese Physics B》 2025年第4期567-573,共7页
The detection of nanoplastics(NPs)and their interactions with antibiotics is critical due to their potential environmental and health risks.Traditional detection methods are challenged by the small size and chemical s... The detection of nanoplastics(NPs)and their interactions with antibiotics is critical due to their potential environmental and health risks.Traditional detection methods are challenged by the small size and chemical similarity of NPs to microplastics.Current surface-enhanced Raman scattering(SERS)substrates for NP detection are limited by high cost,reliance on single enhancement modes,and insufficient sensitivity and selectivity,especially for NP-antibiotic complexes.In this study,the F/M-AAO substrate,which integrates 2,3,5,6-tetrafluoro-tetracyanoquinodimethane(F_(4)TCNQ)and molybdenum disulfide(MoS_(2))with anodic aluminum oxide(AAO)templates,is used to enhance the detection of NPs and NP-antibiotic complexes.The conical cavity structure of the substrate facilitates the enrichment and direct detection of NPs with diameters smaller than 450 nm.The three-dimensional(3D)F/M-AAO substrate achieved a limit of detection(LOD)of 1.73×10^(6)ng/L for 100-nm NPs and a minimum detection concentration of 10^(-10)M for ciprofloxacin adsorbed on NPs(NPs-CIP).It demonstrated remarkable sensitivity and selectivity in the detection of both individual NPs and NPantibiotic complexes.This work highlights the innovative application of the F/M-AAO substrate in the SERS detection of NPs and NP-antibiotic complexes,providing a low-cost and effective platform for monitoring emerging environmental contaminants. 展开更多
关键词 synergistic SERS enhancement organic/MoS_(2)composite nanoplastics
原文传递
Effect of single winding helical electromagnetic stirring on microstructure and mechanical properties of semi-solid Al-Mg_(2)Si in-situ composites
7
作者 Dong Pan Qing-tao Guo +7 位作者 Yi-tong Wang Bing-jun Lu Xue-feng Tang Hua-song Liu Pei Xu Xiao-lei Zhu Chong-yi Wei Yu Zhang 《China Foundry》 2025年第4期449-462,共14页
The Al-Mg_(2)Si in-situ composite is a lightweight material with great potential for application in fields such as automotive lightweighting,aerospace,and electronic components.In this research,the modification,semi-s... The Al-Mg_(2)Si in-situ composite is a lightweight material with great potential for application in fields such as automotive lightweighting,aerospace,and electronic components.In this research,the modification,semi-solid technology coupled with different types of electromagnetic stirring was applied to regulate the undesirable solidified dendritic microstructure and facilitate the composites’mechanical properties.The spheroidization and refinement of Mg_(2)Si andα-Al matrix in SM(semi-solid)+RES(rotate electromagnetic stirring)sample and SM+SHES(single winding helical electromagnetic stirring)sample are realized under the effect of fused dendrite arm,the decreased critical nucleate radius,and the increased nucleation rate and extra supercooling degree induced by electromagnetic stirring.The Mg_(2)Si phase in the SM+RES sample and SM+SHES sample is refined by 73.4%and 75.7%,respectively compared to the AC(as-cast)sample.Besides,the single winding electromagnetic stirring can lead to more homogeneously distributed physical fields,lower temperature gradient,and more significant mass transfer,mainly responsible for the more homogeneous distributed reinforced finer Mg_(2)Si particles in the SM+SHES sample.Moreover,both the tensile properties and hardness of modified semi-solid composites are improved through electromagnetic stirring.Compared with RES,the improvement effect of SHES is more excellent.The SM+SHES sample possesses the highest Brinell hardness(124.7 HB),and its quality index of tensile properties is 5.73%and 82.2%higher than that of the SM+RES and AC samples,respectively. 展开更多
关键词 electromagnetic stirring Al-Mg_(2)Si composites SEMI-SOLID mechanical properties MODIFICATION
在线阅读 下载PDF
Photocatalytic synthesized low content CeO_(2)-modified rutile heterojunction photocatalysts with enhanced wastewater treatment and H_(2)evolution performances
8
作者 NING De-yang LI Jun-qi +4 位作者 CHEN Chao-yi LAN Yuan-pei MURALI Arun WANG Bao-lei WANG Shi-rong 《Journal of Central South University》 2025年第10期3857-3875,共19页
High performance composite photocatalyst is a hotspot in the photocatalysis researches.In this study,a cutting-edge CeO_(2)/rutile composite photocatalyst with tiny CeO_(2)concentration of 1.28 wt%was synthesized via ... High performance composite photocatalyst is a hotspot in the photocatalysis researches.In this study,a cutting-edge CeO_(2)/rutile composite photocatalyst with tiny CeO_(2)concentration of 1.28 wt%was synthesized via a simple photocatalytic method.This as-obtained CeO_(2)/rutile catalyst(CeO_(2)/TiO_(2)-1:1)exhibited an enhanced wastewater degradation and improved water splitting H_(2)evolution ability,with 95.83%removal ratio for methylene blue(MB),72.84%for tetracycline(TC)and 87.57μmol/g H_(2)evolution capacity.Light irradiation and 2-coordinated oxygen vacancies(OV_(2C))on rutile surface promoted the Ce^(3+)adsorption on the rutile(110)facet as DFT results shown.The CeO_(2)/rutile type-Ⅱ heterojunction was evidenced to promote the migration of e^(−)/h^(+)and generation of·OH/·O_(2)^(−)and H_(2),which rapidly boosted the whole photocatalytic performance.This as-prepared CeO_(2)/TiO_(2)photocatalyst can provide useful inspirations and new thoughts about the photosynthesis process,and offer a novel strategy for heterojunction photocatalysts preparation. 展开更多
关键词 photocatalytic synthesis type-Ⅱheterojunction CeO_(2)/TiO_(2)composite H_(2)evolution wastewater treatment
在线阅读 下载PDF
Unraveling the reaction mechanism of high reversible capacity CuP_(2)/C anode with native oxidation PO_(x) component for sodium-ion batteries
9
作者 Huixin Chen Chen Zhao +4 位作者 Hongjun Yue Guiming Zhong Xiang Han Liang Yin Ding Chen 《Chinese Chemical Letters》 2025年第1期574-578,共5页
Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating... Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating metals such as copper(Cu)into phosphorus has been demonstrated to not only improve the electronic conductivity but also accommodate the volume change during cycling,yet the underline sodiation mechanism is not clear.Herein,take a copper phosphide and reduced graphene oxide(CuP_(2)/C)composite as an example,which delivers a high reversible capacity of>900 mAh/g.Interestingly,it is revealed that the native oxidation PO_(x)components of the CuP_(2)/C composite show higher electrochemical reversibility than the bulk Cu P_(2),based on a quantitative analysis of high-resolution solid-state^(31)P NMR,ex-situ XPS and synchrotron X-ray diffraction characterization techniques.The sodiation products Na_(3)PO_(4) and Na_(4)P_(2)O_(7) derived from PO_(x) could react with Na-P alloys and regenerate to PO_(x) during charge process,which probably accounts for the high reversible capacity of the Cu P_(2)/C anode.The findings also illustrate that the phosphorus transforms into nanocrystalline Na_(3)P and Na_(x)P alloys,which laterally shows crystallization-amorphization evolution process during cycling. 展开更多
关键词 CuP_(2)/C composite POx component Reaction mechanism Solid-state NMR Sodium-ion batteries
原文传递
Microstructural optimization and strengthening mechanisms of in-situ TiB_(2)/Al–Cu composite after multidirectional forging for six passes
10
作者 Sen Yang Zhiren Sun +4 位作者 Zipeng Wang Shuhui Zhao Kaikun Wang Dun Li Xiaokai Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1703-1718,共16页
In-situ TiB_(2)/Al–Cu composite was processed by multidirectional forging(MDF)for six passes.The microstructure evolution of the forged workpiece was examined across various regions.The mechanical properties of the a... In-situ TiB_(2)/Al–Cu composite was processed by multidirectional forging(MDF)for six passes.The microstructure evolution of the forged workpiece was examined across various regions.The mechanical properties of the as-cast and MDFed composites were compared,and their strengthening mechanisms were analyzed.Results indicate that the grain refinement achieved through the MDF process is mainly due to the subdivision of the original grains through mechanical geometric fragmentation and the occurrence of dynamic recrystallization(DRX).DRX grains are formed through discontinuous DRX,continuous DRX,and recrystallization induced by particle-stimulated nucleation.A rise in accumulated equivalent strain(Σ?ε)results in finerα-Al grains and a more uniform distribution of TiB_(2)particles,which enhance the Vickers hardness of the composite.In addition,the tensile properties of the MDFed composite significantly improve compared with those of the as-cast composites,with ultimate tensile strength and yield strength increasing by 51.2%and 54%,respectively.This enhancement is primarily due to grain refinement strengthening and dislocation strengthening achieved by the MDF process. 展开更多
关键词 in-situ TiB_(2)/Al-Cu composite multidirectional forging grain refinement dynamic recrystallization tensile properties
在线阅读 下载PDF
Hierarchical work function programming for optimizing interfacial polarization in electromagnetic wave absorber
11
作者 Jinkun Liu Xuelian Yang +4 位作者 Wenxuan Chen Pingan Zhu Guanglei Wu Jing Zheng Xu Hou 《Chinese Chemical Letters》 2025年第10期323-328,共6页
The development of next-generation electromagnetic wave(EMW)absorbers requires a shift in interface design.By employing hierarchical work function programming,we propose an approach to tune interfacial polarization dy... The development of next-generation electromagnetic wave(EMW)absorbers requires a shift in interface design.By employing hierarchical work function programming,we propose an approach to tune interfacial polarization dynamics.This method utilizes multi-gradient work functions to guide carrier migration and polarization effectively,thereby enhancing energy dissipation under alternating electromagnetic fields.Here,we constructed a 1T/2H-MoS_(2)/PPy/VS_(2) composite absorber with integrated gradient interfaces.The composite achieved a powerful absorption(RLmin)of-58.59 dB at 2.3 mm,and an effective absorption bandwidth(EAB)of 7.44 GHz at 2.5 mm,demonstrating improved broadband absorption.Radar cross-section(RCS)simulations show an EMW loss of-7.2 dB m^(2) at 0°,highlighting its potential for stealth and communication applications.This study introduces hierarchical work function programming as a promising strategy in EMW absorber design,contributing to advancements in material performance and functionality. 展开更多
关键词 Work function Interface polarization 1T/2H-MoS_(2)/PPy/VS_(2)composites Electromagnetic wave absorption
原文传递
Tuning Oxygen Vacancies by Construction of a SiO_(2)@TiO_(2) Core-Shell Composite Structure for Boosting Photocatalytic CO_(2) Reduction Towards CH_(4)
12
作者 Jinshuo Li Chi Cao +5 位作者 Xiaoyu Zhang Huahua Dong Mengfei Wang Lin Zhang Zihao Xing Wensheng Yang 《Carbon Energy》 2025年第4期62-73,共12页
Controlled photocatalytic conversion of CO_(2) into premium fuel such as methane(CH4)offers a sustainable pathway towards a carbon energy cycle.However,the photocatalytic efficiency and selectivity are still unsatisfa... Controlled photocatalytic conversion of CO_(2) into premium fuel such as methane(CH4)offers a sustainable pathway towards a carbon energy cycle.However,the photocatalytic efficiency and selectivity are still unsatisfactory due to the limited availability of active sites on the current photocatalysts.To resolve this issue,the design of oxygen vacancies(OVs)in metal-oxide semiconductors is an effective option.Herein,in situ deposition of TiO_(2) onto SiO_(2) nanospheres to construct a SiO_(2)@TiO_(2) core-shell structure was performed to modulate the oxygen vacancy concentrations.Meanwhile,charge redistribution led to the formation of abundant OV-regulated Ti-Ti(Ti-OV-Ti)dual sites.It is revealed that Ti-OV-Ti dual sites served as the key active site for capturing the photogenerated electrons during light-driven CO_(2) reduction reaction(CO_(2)RR).Such electron-rich active sites enabled efficient CO_(2) adsorption and activation,thus lowering the energy barrier associated with the rate-determining step.More importantly,the formation of a highly stable*CHO intermediate at Ti-OV-Ti dual sites energetically favored the reaction pathway towards the production of CH4 rather than CO,thereby facilitating the selective product of CH_(4).As a result,SiO_(2)@TiO_(2)-50 with an optimized oxygen vacancy concentration of 9.0% showed a remarkable selectivity(90.32%)for CH_(4) production with a rate of 13.21μmol g^(-1) h^(-1),which is 17.38-fold higher than that of pristine TiO_(2).This study provides a new avenue for engineering superior photocatalysts through a rational methodology towards selective reduction of CO_(2). 展开更多
关键词 oxygen vacancy photocatalytic CO_(2)methanation SiO_(2)@TiO_(2)core-shell composite structure Ti-OV-Ti dual sites
在线阅读 下载PDF
Biodegradable phosphorus-modified Mg_(2)Ge/Mg-Cu composite with good angiogenic,osteogenic,and antibacterial functionalities for bone-fixation applications
13
作者 Xian Tong Lanxin Gu +7 位作者 Jianchen Yu Yue Han Yue Huang Xinkun Shen Yuncang Li Jixing Lin Cuie Wen Daoyi Miao 《Journal of Magnesium and Alloys》 2025年第9期4628-4648,共21页
Magnesium(Mg)-based composites are expected to be useful for biodegradable bone-implant materials due to their degradability,similar elastic modulus to that of bone,and biofunctionalities.However,their rapid degradati... Magnesium(Mg)-based composites are expected to be useful for biodegradable bone-implant materials due to their degradability,similar elastic modulus to that of bone,and biofunctionalities.However,their rapid degradation,poor biotribology performance,and lack of vascularization and antibacterial activity are not conducive to bone-fixation applications.In this study,an in situ Mg_(2)Ge/Mg-Cu-P composite with a nominal composition of Mg-10Ge-2Cu-0.5P(denoted MGCP)was prepared via phosphorus(P)-modified casting followed by hot extrusion for biodegradable bone-fixation applications.For comparison,an in situ Mg_(2)Ge/Mg-Cu composite(Mg-10Ge-2Cu,denoted MGC)was prepared under the same conditions without P-modification.The hot-extruded(HE)MGCP sample showed significantly improved corrosion resistance with corrosion rates of 2.2 mm/y and 2.51 mm/y as measured by potentiodynamic-polarization and hydrogen-release testing in Dulbecco’s Modified Eagle Medium supplemented with fetal bovine serum(denoted DMEM).The HE MGCP also exhibited notably enhanced mechanical properties and biotribological resistance in DMEM,with an σ_(UTS) of ~304.2 MPa,σ_(TYS) of ~202.5 MPa,elongation of ~12.3%,σ_(UCS) of 769.0 MPa,σ_(CYS) of 208.0 MPa,and Brinell hardness of 105.3 HB,along with smallerσ_(TYS) andσ_(CYS) decreases after 3 d of immersion in Hanks’solution.In comparison to pure titanium and Mg,the HE MGCP demonstrated much greater cytocompatibility,angiogenic capacity,and osteogenic differentiation and mineralization capability.Furthermore,the HE MGCP displayed markedly higher in vitro antibacterial activity,in vivo antibacterial and anti-inflammatory ability,and good biosafety in a rat subcutaneous-implantation model compared to pure titanium and Mg,indicating significant potential for biodegradable bone-fixation applications. 展开更多
关键词 Angiogenic ability ANTI-INFLAMMATORY Biotribological performance Mechanical stability Mg_(2)Ge/Mg-Cu composite
在线阅读 下载PDF
Introducing High-Volume-Fraction Ultrafine Grains to Obtain Superior Balance of Strength and Electrical Conductivity for Cu/Al_(2)O_(3)Composite
14
作者 Zhang Jun Liu Xi +7 位作者 Li Yi Chang Guo Peng Haoran Zhang Shuang Huang Qi Zhao Xueni Li Liang Huo Wangtu 《稀有金属材料与工程》 北大核心 2025年第4期908-919,共12页
Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate u... Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate ultrafine composite powders with lowcontent reinforcement and constructed a combined structure of Cu ultrafine powders covered with in-situ Al_(2)O_(3)nanoparticles.After consolidation at a relatively lower sintering temperature of 550℃,high-volume-fraction ultrafine grains were introduced into the Cu/Al_(2)O_(3)composite,and many in-situ Al_(2)O_(3)nanoparticles with an average size of 11.7±7.5 nm were dispersed homogeneously in the Cu grain.Results show that the composite demonstrates an excellent balance of high tensile strength(654±1 MPa)and high electrical conductivity(84.5±0.1%IACS),which is ascribed to the synergistic strengthening effect of ultrafine grains,dislocations,and in-situ Al_(2)O_(3)nanoparticles.This approach,which utilizes ultrafine composite powder with low-content reinforcement as a precursor and employs low-temperature and high-pressure sintering subsequently,may hold promising potential for large-scale industrial production of high-performance oxide dispersion strengthened alloys. 展开更多
关键词 Cu/Al_(2)O_(3)composite ultrafine grain in-situ Al_(2)O_(3)nanoparticle strengthening mechanism electrical conductivity
原文传递
Preparation of a Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 for the Adsorption Removal of Fluoride in Zinc Sulfate Electrolyte
15
作者 LIAO Jia WANG Chunmei +4 位作者 LI Fei YANG Chengcheng GUO Xianyu TAN Wentao LI Hui 《吉首大学学报(自然科学版)》 2025年第3期46-61,共16页
To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL... To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5. 展开更多
关键词 Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 composite FLUORIDE REMOVAL ADSORPTION zinc sulfate electrolyte
在线阅读 下载PDF
Microstructural evolution and mechanical properties of network-structure Ti_(2)AlC/TiAl composites prepared by spark plasma sintering
16
作者 Dong-dong ZHU Jiang-fei YAN +4 位作者 Yu-peng WANG Duo DONG Xiao-hong WANG Teng-fei MA Zun-jie WEI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2273-2287,共15页
Ti_(2)AlC/TiAl composites with a network structure were successfully prepared with carbon nanotubes and Ti-45Al-8Nb pre-alloyed powder using spark plasma sintering.The effects of sintering temperature(1200-1350℃)on t... Ti_(2)AlC/TiAl composites with a network structure were successfully prepared with carbon nanotubes and Ti-45Al-8Nb pre-alloyed powder using spark plasma sintering.The effects of sintering temperature(1200-1350℃)on the microstructural evolution and mechanical properties were systematically investigated.The microstructure of Ti_(2)AlC/TiAl composites exhibits duplex,near-lamellar,and fully lamellar structures,as the sintering temperature increases from 1200 to 1350℃.The network structured Ti_(2)AlC phase can refine the microstructure and the phase becomes discontinuous at high sintering temperatures.Notably,composites sintered at 1300℃ exhibit excellent mechanical properties,with the highest compressive strength(1921 MPa)and fracture strain(26%)at room temperature.Moreover,the ultimate tensile strength and fracture strain reach 537 MPa and 3.1%at 900℃,and 485 MPa and 3.3%at 950℃,respectively.The enhancement of the mechanical properties is attributed primarily to the load bearing,particle pull-out,and inhibition of crack propagation induced by Ti_(2)AlC particles. 展开更多
关键词 Ti_(2)AlC/TiAl composites microstructure spark plasma sinter high-temperature tensile property strengthening mechanism
在线阅读 下载PDF
Effect of Al_(2)O_(3)nano sol content in Ni-Al_(2)O_(3)composite coating on intermetallic compound formation and properties of Mg/Al soldered joints
17
作者 Yingzong Liu Yuanxing Li +2 位作者 Jinzhe Cui Zongtao Zhu Hui Chen 《Journal of Magnesium and Alloys》 2025年第4期1784-1798,共15页
Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated ... Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated on the Mg alloy substrate,and then Sn_(3.0)Ag_(0.5)Cu(SAC 305)solder was utilized to facilitate the joining of AZ31 Mg/6061 Al through ultrasonic-assisted soldering.We investigated the impactof Al_(2)O_(3)nano sol content in the coating on microstructure evolution,IMCs formation,and mechanical properties.Results indicated that theNi-Al_(2)O_(3)composite coating effectively suppressed the Mg-Sn reaction,thereby preventing the formation of Mg_(2)Sn IMC and significantlyenhancing joint strength.In joints with a Ni-Al_(2)O_(3)composite coating containing 50 mL/L Al_(2)O_(3)nano sol,no Mg_(2)Sn IMC was detectedafter 50 min of holding at 260℃,achieving a maximum shear strength of approximately 67.2 MPa.Increasing the Al_(2)O_(3)concentrationfurther expanded the soldering process window.For the joint with Ni-Al_(2)O_(3)(100 mL/L Al_(2)O_(3)nano sol)composite coating held at 260℃for 70 min,the coating was dissolved to a thickness of about 5.8μm,but no Mg_(2)Sn IMC was observed.The Ni-based solid solution formednear the coating/solder interface was strengthened,leading to fractures occurring within the SAC solder,and the maximum shear strengthfurther increased to 73.9 MPa.The strengthening mechanism of the joints facilitated by using the Ni-Al_(2)O_(3)composite coating was revealedby comparing with pure Ni-assisted joints.Therefore,employing a Ni-Al_(2)O_(3)composite coating as a barrier layer represents a promisingstrategy for inhibiting IMC formation during the joining of dissimilar metals. 展开更多
关键词 Ni-Al_(2)O_(3)composite coating Ultrasonic-assisted soldering Mg_(2)Sn IMC Shear strength
在线阅读 下载PDF
Ti_(3)C_(2)T_(x) Composite Aerogels Enable Pressure Sensors for Dialect Speech Recognition Assisted by Deep Learning
18
作者 Yanan Xiao He Li +8 位作者 Tianyi Gu Xiaoteng Jia Shixiang Sun Yong Liu Bin Wang He Tian Peng Sun Fangmeng Liu Geyu Lu 《Nano-Micro Letters》 2025年第5期1-15,共15页
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages... Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages,which hampers effective communication for non-standard language people.Here,we prepare an ultralight Ti_(3)C_(2)T_(x)MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 k Pa,rapid response/recovery time,and low hysteresis(13.69%).The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference,allowing for accurate recognition of six dialects(96.2%accuracy)and seven different words(96.6%accuracy)with the assistance of convolutional neural networks.This work represents a significant step forward in silent speech recognition for human–machine interaction and physiological signal monitoring. 展开更多
关键词 Pressure sensor Wearable sensor Ti_(3)C_(2)T_(x) composite aerogel Dialect speech recognition
在线阅读 下载PDF
Construction of mesoporous Fe_(2)O_(3)/Cr_(2)O_(3) n-p heterojunctions for efficient improvement of low-concentration acetone detection and gas-sensing mechanism
19
作者 Shan Tang Jing-Cai Xu +6 位作者 Xin-Qin Lu Wei-Jie Chen Hong-Wei Chen Zan Du Z.C.Yu Bo Hong Xin-Qing Wang 《Rare Metals》 2025年第7期4851-4867,共17页
Low-concentration acetone detection is of great importance for acetone sensor in the fields of environmental protection and noninvasive diagnosis.In this work,mesoporous Fe_(2)O_(3)/Cr_(2)O_(3)n-p heterojunctions were... Low-concentration acetone detection is of great importance for acetone sensor in the fields of environmental protection and noninvasive diagnosis.In this work,mesoporous Fe_(2)O_(3)/Cr_(2)O_(3)n-p heterojunctions were constructed for efficient improvement of low-concentration acetone gas sensing.The gas-sensing results indicated that the mesoporous Fe_(2)O_(3)/Cr_(2)O_(3)composites with a significantly large specific surface area exhibited significantlyenhanced acetone gas-sensitive performance compared to pure Fe_(2)O_(3).The Fe_(2)O_(3)/Cr_(2)O_(3)composites demonstrated a high response,good selectivity and excellent stability over200 days to 10 ppm acetone at 220℃.And the theoretical detection limit was calculated to reach 0.285 ppm acetone.A feasible acetone sensing mechanism was proposed through electronic band structure and density functional theory.The improved low-concentration acetone sensing performance was due to the formed mesoporous Fe_(2)O_(3)/Cr_(2)O_(3)n-p heterojunctions with a large specific surface area.The Fe_(2)O_(3)/Cr_(2)O_(3)composites showed excellent acetone gas-sensitive performance,which could be a promising candidate for developing low-concentration acetone sensing devices at low working temperatures. 展开更多
关键词 Fe_(2)O_(3)/Cr_(2)O_(3)composites n-p heterojunctions Mesoporous structure Acetone gas Gas-sensing performance
原文传递
Development of Interpenetrating Phase Structure AZ91/Al_(2)O_(3)Composites with High Stiffness,Superior Strength and Low Thermal Expansion Coefficient
20
作者 Zhiqing Chen Zhixian Zhao +6 位作者 Yiqiang Hao Xiaoling Chen Liping Zhou Jingya Wang Tao Ying Bin Chen Xiaoqin Zeng 《Acta Metallurgica Sinica(English Letters)》 2025年第2期245-258,共14页
Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive perform... Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive performance of materials,but the processing difficulty,especially in ceramics forming,limits the control and innovation of material architecture.Here,combined with 3D printing and squeeze infiltration technology,two precisely controllable architectures of AZ91/Al_(2)O_(3)interpenetrating phase composites(IPC)with ceramic scaffold were prepared.The interface,properties and impact of different architecture on IPC performance were studied by experiments and finite element simulation.The metallurgical bonding of the interface was realized with the formation of MgAl_(2)O_(4)reaction layer.The IPC with 1 mm circular hole scaffold(1C-IPC)exhibited significantly improved elastic modulus of 164 GPa,high compressive strength of 680 MPa,and good CTE of 12.91×10^(-6)K^(−1),which were 3.64 times,1.98 times and 55%of the Mg matrix,respectively.Their elastic modulus,compressive strength,and CTE were superior to the vast majority of Mg alloys and Mg based composites.The reinforcement and matrix were bicontinuous and interpenetrating each other,which played a critical role in ensuring the potent strengthening effect of the Al_(2)O_(3)reinforcement by efficient load transfer.Under the same volume fraction of reinforcements,compared to IPC with 1 mm hexagonal hole scaffold(1H-IPC),the elastic modulus and compressive strength of 1C-IPC increased by 15%and 28%,respectively,which was due to the reduced stress concentration and more uniform stress distribution of 1C-IPC.It shows great potential of architecture design in improving the performance of composites.This study provides architectural design strategy and feasible preparation method for the development of high performance materials. 展开更多
关键词 Interpenetrating phase composites Al_(2)O_(3)/Mg composites Interface Elastic modulus Compressive strength Coefficient of thermal expansion(CTE)
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部