期刊文献+
共找到451篇文章
< 1 2 23 >
每页显示 20 50 100
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
1
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep Q-network graph neural network
在线阅读 下载PDF
基于改进Graph2Seq的实体融合摘要生成模型
2
作者 陶源 钱惠敏 《计算机与现代化》 2025年第6期1-8,共8页
针对现有摘要生成模型占用计算资源大和对关键命名实体信息关注不足的问题,基于Graph2Seq模型提出一种融合实体和稀疏注意力的文摘生成模型(ESG2S)。首先,将原始文本构建为句法依存图,并进行实体节点增强,得到图数据;其次,将构建好的图... 针对现有摘要生成模型占用计算资源大和对关键命名实体信息关注不足的问题,基于Graph2Seq模型提出一种融合实体和稀疏注意力的文摘生成模型(ESG2S)。首先,将原始文本构建为句法依存图,并进行实体节点增强,得到图数据;其次,将构建好的图数据送入编码器,进行文本结构的学习;最后,将编码后的图数据送入融合了对称散度增强稀疏注意力的LSTM解码器,生成多条摘要。在CNN/DM数据集上进行实验,结果表明本文模型效果优于近年的一些主流方法,并在实体信息保留上取得了成效,生成的摘要可读性和信息全面性更佳。 展开更多
关键词 关键词摘要生成 graph2Seq 命名实体 稀疏注意力
在线阅读 下载PDF
Ontology Matching Method Based on Gated Graph Attention Model
3
作者 Mei Chen Yunsheng Xu +1 位作者 Nan Wu Ying Pan 《Computers, Materials & Continua》 2025年第3期5307-5324,共18页
With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms o... With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching. 展开更多
关键词 Ontology matching representation learning OWL2Vec*method graph attention model
在线阅读 下载PDF
Graph neural network-driven prediction of high-performance CO_(2)reduction catalysts based on Cu-based high-entropy alloys
4
作者 Zihao Jiao Chengyi Zhang +2 位作者 Ya Liu Liejin Guo Ziyun Wang 《Chinese Journal of Catalysis》 2025年第4期197-207,共11页
High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface compl... High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts. 展开更多
关键词 Density functional theory Machine learning CO_(2)reduction High entropy alloys graph neural network
在线阅读 下载PDF
Graph neural network-based scheduling for multi-UAV-enabled communications in D2D networks 被引量:1
5
作者 Pei Li Lingyi Wang +3 位作者 Wei Wu Fuhui Zhou Baoyun Wang Qihui Wu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期45-52,共8页
In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission... In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means. 展开更多
关键词 Unmanned aerial vehicle D2 Dcommunication graph neural network Power control Position planning
在线阅读 下载PDF
2-Factors with a Few Components in Balanced Bipartite Graphs
6
作者 Huanxin Pei 《Engineering(科研)》 2024年第11期361-370,共10页
In this paper, a sufficient condition for a balanced bipartite graph to contain a 2-factor F is given. We show that every balanced bipartite graph of order 2n (n≥6)and e(G)>n2−2n+4contains a 2-factor with k compon... In this paper, a sufficient condition for a balanced bipartite graph to contain a 2-factor F is given. We show that every balanced bipartite graph of order 2n (n≥6)and e(G)>n2−2n+4contains a 2-factor with k components, 2d1-cycle, ⋯, 2dk-cycle, if one of the following is satisfied: (1) k=2, δ(G)≥2and d1−2≥d2≥2;(2) k=3, δ(G)≥d3+2and d1−2≥d2≥d3≥4. In particular, this extends one result of Moon and Moser in 1963 under condition (1). 展开更多
关键词 2-Factor Bipartite graph Degree Condition
在线阅读 下载PDF
基于自适应MCMC的鲁棒因子图优化组合导航算法
7
作者 陈熙源 崔天昊 钟雨露 《仪器仪表学报》 北大核心 2025年第2期81-91,共11页
在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能... 在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能和估计精度,针对传统因子图优化算法中量测噪声协方差矩阵不准确带来状态估计精度下降的问题,提出了一种基于自适应MCMC的鲁棒因子图优化组合导航算法。首先,基于先验和后验两阶段将自适应MCMC引入因子图优化框架,在先验中通过MCMC算法将对后验概率采样转化为对先验概率和似然概率的乘积进行采样,并引入自适应策略提高采样效率,得到后验概率对应的样本集。在后验中,通过KL散度最小化近似后验和真实后验,从而精确估计GNSS时变量测噪声协方差;其次,引入新息χ^(2)检测算法,通过构建假设检验统计量和量测异常边界值来检测和剔除粗差。所提方法在减小粗差干扰的同时能有效估计GNSS时变量测噪声。由INS/GNSS组合导航的仿真和现场实验表明,所提方法相比普通因子图优化算法和基于变分贝叶斯的鲁棒自适应因子图优化算法在水平定位均方根误差上分别减小了20.4%、11.9%和71.6%、25.2%,具有较好的鲁棒性。 展开更多
关键词 组合导航 因子图优化 自适应MCMC 新息χ^(2)检测算法
原文传递
不含3-,4-,7-圈平面图的2-距离染色
8
作者 卜月华 包智敏 朱洪国 《浙江师范大学学报(自然科学版)》 2025年第2期133-141,共9页
通过分析极小反例平面图的结构性质,并运用权转移技巧,研究了不含3-,4-,7-圈平面图的2-距离色数.证明了Δ≥24且无3-,4-,7-圈的平面图G,有χ_(2)(G)≤Δ+3.该研究结果推广了此类平面图的2-距离染色的已知结果.
关键词 平面图 2-距离染色 权转移
在线阅读 下载PDF
仙人掌图的D(2)-点可区别全染色
9
作者 高杨 汪银芳 +1 位作者 文飞 李沐春 《高校应用数学学报(A辑)》 北大核心 2025年第2期243-252,共10页
图G的k-D(2)-点可区别全染色是G的一个正常k-全染色f满足对■u,v∈V(G),当dG(u,v)≤2时都有C_(f)(u)≠C_(f)(v),其中C_(f)(u)={f(u)}∪{f(uv)|uv∈E(G)}.将所用颜色数的最小值k称为图G的D(2)-点可区别全色数,简记为χ_(2vt)(G).应用数... 图G的k-D(2)-点可区别全染色是G的一个正常k-全染色f满足对■u,v∈V(G),当dG(u,v)≤2时都有C_(f)(u)≠C_(f)(v),其中C_(f)(u)={f(u)}∪{f(uv)|uv∈E(G)}.将所用颜色数的最小值k称为图G的D(2)-点可区别全色数,简记为χ_(2vt)(G).应用数学归纳法结合Hall定理考虑了仙人掌图G_(T)的D(2)-点可区别全染色,得到了χ_(2vt)(GT)≤Δ+3. 展开更多
关键词 仙人掌图 Hall定理 D(2)-点可区别全染色 D(2)-点可区别全色数
在线阅读 下载PDF
圈图与简单图的冠图的D(2)-点和可区别边染色的界
10
作者 何静 强会英 《吉林大学学报(理学版)》 北大核心 2025年第2期375-381,共7页
利用组合零点定理、构造染色法和数学归纳法,研究圈图与简单图的冠图的D(2)-点和可区别边染色问题,得到了圈图与简单图的冠图的D(2)-点和可区别边色数的界为Δ(G)+1,进而推出路图与简单图的冠图的界为Δ(G)+1.
关键词 圈图 简单图 冠图 D(2)-点和可区别边染色 D(2)-点和可区别边色数
在线阅读 下载PDF
Two Results on Uniquely r-Pancyclic Graphs 被引量:1
11
作者 施永兵 孙家恕 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第2期56-60,共5页
In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of comb... In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time. 展开更多
关键词 graph theory cycle uniquely pancyclic graph r-UPC-graph -graph r-UPC[C_t^2]-graph
在线阅读 下载PDF
基于MASTGCN的AIS信息船舶SO_(2)排放预测模型
12
作者 姚丹阳 岳明齐 +2 位作者 张珣 武芳 程诗茗 《交通信息与安全》 北大核心 2025年第2期65-73,共9页
船舶排放的二氧化硫(SO_(2))是导致大气污染和海洋酸化的主要因素之一,其时空分异性显著且不均,当前船舶污染物预测模型在时空依赖性建模方面存在局限性,难以有效捕捉船舶SO_(2)排放中的复杂时空关联特征。针对该问题,基于船舶自动识别... 船舶排放的二氧化硫(SO_(2))是导致大气污染和海洋酸化的主要因素之一,其时空分异性显著且不均,当前船舶污染物预测模型在时空依赖性建模方面存在局限性,难以有效捕捉船舶SO_(2)排放中的复杂时空关联特征。针对该问题,基于船舶自动识别系统(automatic identification system,AIS)数据及中国船舶基础信息数据,采用动力学方法结合排放因子量化船舶航行过程中的SO_(2)排放量,为后续预测提供了数据支持。在预测模型构建方面,研究了融合多头自注意力机制的时空图卷积网络(multi-head attention spatial-temporal graph convolutional network,MASTGCN)预测模型。该模型以时空图卷积网络(spatial-temporal graph convolutional network,STGCN)为基础架构,在空间和时间维度中引入多头自注意力机制,通过动态权重分配强化对不同区域间空间关联性以及不同时段间时间关联性的建模能力,实现对船舶SO_(2)排放的时空预测。实验结果表明,在注意力头数为5时,模型的平均绝对误差(mean absolute error,MAE)、均方误差(mean squared error,MSE)、均方根误差(root mean squared error,RMSE)以及浮点运算数(floating point operations,FLOPs)分别为0.057 5、0.120 6、0.347 3、3 030 M,模型准确度和计算复杂度的综合性能优于其他头数配置及STGCN模型。相较于STGCN模型,MAE、MSE、RMSE和FLOPs指标分别提高了27.6%、6.0%和1.3%。研究结果表明,多头注意力机制可以通过动态权重分配有效捕获船舶SO_(2)排放的空间特征,5个注意力头的MASTGCN模型在预测精度上表现优秀,同时在计算复杂度方面保持相对合理。 展开更多
关键词 绿色航运 AIS数据 船舶SO_(2)排放预测 时空图卷积模型 多头注意力机制
在线阅读 下载PDF
基于强连通分量的最短环计数索引
13
作者 杨迎 周军锋 杜明 《计算机科学》 北大核心 2025年第4期169-176,共8页
最短环计数是图分析的一种基本模式。经过某个顶点的最短环计数指经过该顶点且长度最短的环的数目。在现实生活中,最短环计数应用十分广泛,如欺诈交易检测、罪犯预筛选以及文件共享优化等。针对现有方法索引空间较大、查询效率较低等问... 最短环计数是图分析的一种基本模式。经过某个顶点的最短环计数指经过该顶点且长度最短的环的数目。在现实生活中,最短环计数应用十分广泛,如欺诈交易检测、罪犯预筛选以及文件共享优化等。针对现有方法索引空间较大、查询效率较低等问题,研究如何在原始图上构建最短环计数索引,提出了一种针对最短环计数且无需进行图转换操作的STC索引(Trough Shortest Cycle Counting Index)。该索引根据最短环的特征对其进行分类,针对不同类型的最短环分别构建不同的索引信息,能够直接基于原始图构造索引,并且在保证索引规模不扩大、索引构造时间不增加的前提下,进一步提升查询效率。此外,根据环与强连通分量的特殊关系,提出了基于强连通分量的索引策略,通过在强连通分量内部构造最短环计数索引,可以进一步提升索引构造效率,有效减小索引规模,提升查询效率。在10个真实数据集上进行了实验。实验结果验证了所提出的STC索引的高效性,以及基于强连通分量的策略可以有效减小索引空间,提升索引构造以及查询效率。 展开更多
关键词 图分析 最短环 最短环计数 2-hop索引 强连通分量
在线阅读 下载PDF
树高不为零的三圈图的D(2)-点和可区别全染色
14
作者 白羽 强会英 何静 《吉林大学学报(理学版)》 北大核心 2025年第4期1075-1082,共8页
用分析法、反证法和组合零点定理,研究树高不为零的三圈图的D(2)-点和可区别全染色问题,得到了该类图的D(2)-点和可区别全色数的一个上界为Δ(G)+3.
关键词 三圈图 D(2)-点和可区别全染色 D(2)-点和可区别全色数
在线阅读 下载PDF
Performance analysis of graph-based scheduling for device-to-device communications overlaying cellular networks
15
作者 杜鹏 张源 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期272-277,共6页
The performance of the graph-based scheduling for device-to-device communications overlaying cellular networks is studied. The graph-based scheduling consists of two stages, the frequency assignment stage and the time... The performance of the graph-based scheduling for device-to-device communications overlaying cellular networks is studied. The graph-based scheduling consists of two stages, the frequency assignment stage and the time slot scheduling stage. For such scheduling, a theoretical method to analyze the average spectrum efficiency of the D2D subsystem is proposed. The method consists of three steps. First, the frequency assignment stage is analyzed and the approximate formula of the average number of the D2D links which are assigned the same frequency is derived. Secondly, the time slot scheduling stage is analyzed and the approximate formula of the average probability of a D2D link being scheduled in a time slot is derived. Thirdly, the average spectrum efficiency of the D2D subsystem is analyzed and the corresponding approximate formula is derived. Analysis results show that the average spectrum efficiency of the D2D subsystem is approximately inversely linearly proportional to the second- order origin moment of the normalized broadcast radius of D2D links. Simulation results show that the proposed method can correctly predict the average spectrum efficiency of the D2D subsystem. 展开更多
关键词 CELLULAR device-to-device (D2D) communication graph SCHEDULING spectrum efficiency
在线阅读 下载PDF
Detect the disrupted brain structural connectivity in type 2 diabetes mellitus patients without cognitive impairment
16
作者 Yi-Fan Li Yue Wei +8 位作者 Ming-Rui Li Zhi-Zhong Sun Wei-Yan Xie Qian-Fan Li Chen-Hui Xie Jing-Yi Xiang XinTan Shi-Jun Qiu Yi Liang 《World Journal of Diabetes》 2025年第7期91-101,共11页
BACKGROUND Cognitive decline in type 2 diabetes mellitus(T2DM)occurs years before the onset of clinical symptoms.Early detection of this incipient cognitive decline stage,which is T2DM without mild cognitive impairmen... BACKGROUND Cognitive decline in type 2 diabetes mellitus(T2DM)occurs years before the onset of clinical symptoms.Early detection of this incipient cognitive decline stage,which is T2DM without mild cognitive impairment,is critical for clinical intervention,yet it remains elusive and challenging to identify.AIM To identify structural changes in the brains of T2DM patients without cognitive impairment to gain insights into the early-stage cognitive decline.METHODS Using diffusion tensor imaging(DTI),we constructed structural brain networks in 47 T2DM patients and 47 age-/sex-matched healthy controls.Machine learning models incorporating connectivity features were developed to classify T2DM brains and predict disease duration.RESULTS T2DM patients exhibited reduced global/local efficiency and small-worldness,alongside weakened connectivity in cortical regions but enhanced subcortical-frontal connections,suggesting compensatory mechanisms.A classification model leveraging 18 connectivity features achieved 92.5%accuracy in distinguishing T2DM brains.Structural connectivity patterns further predicted disease onset with an error of±1.9 years.CONCLUSION Our findings reveal early-stage brain network reorganization in T2DM,highlighting subcortical-frontal connectivity as a compensatory biomarker.The high-accuracy models demonstrate the potential of DTI-based biomarkers for preclinical cognitive decline detection. 展开更多
关键词 Type 2 diabetes mellitus White matter Diffusion tensor imaging Cognitive impairment graph theoretical analysis
暂未订购
TCMLCM:an intelligent question-answering model for traditional Chinese medicine lung cancer based on the KG2TRAG method
17
作者 Chunfang ZHOU Qingyue GONG +2 位作者 Wendong ZHAN Jinyang ZHU Huidan LUAN 《Digital Chinese Medicine》 2025年第1期36-45,共10页
Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the know... Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine. 展开更多
关键词 Traditional Chinese medicine(TCM) Lung cancer Question-answering Large language model Fine-tuning Knowledge graph KG2TRAG method
暂未订购
深度学习算法在二维图谱EMGs的手势中的应用
18
作者 黎峻玮 《长江信息通信》 2025年第5期41-43,51,共4页
为了提高二维图谱EMGs的手势识别能力,构建一种改进YOLO算法模型,将该模型应用到二维图谱手势图像异常检测与评估中,利用异常检测模型完成线路中故障特征的识别和分类,在YOLO算法模型上融合了骨干网络构建异常检测模型,并加入空间金字... 为了提高二维图谱EMGs的手势识别能力,构建一种改进YOLO算法模型,将该模型应用到二维图谱手势图像异常检测与评估中,利用异常检测模型完成线路中故障特征的识别和分类,在YOLO算法模型上融合了骨干网络构建异常检测模型,并加入空间金字塔池化(Spatial Pyramid Pooling,SPP)模块将局部细节特征与全局特征相融合,提高了图像信息的分析与计算能力。实验结果显示,该研究系统模型的准确率最高为0.89,二维图谱手势图像异常检测与评估能力大大提高。 展开更多
关键词 二维图谱手势图像 YOLO算法模型 异常检测 图像融合
在线阅读 下载PDF
基于Gabor滤波器的Graph Cuts右心室MR图像分割 被引量:2
19
作者 马双 陆雪松 《计算机与数字工程》 2016年第6期1167-1170,共4页
在医学图像处理中,右心室分割在临床医学诊断和对病情的定量分析中有着越来越重要的意义。由于心脏MR图像右心室具有高变异、壁薄、边界不明显的特点,论文利用2D-Gabor对心脏图像进行滤波处理,得到特征图像,借助高斯混合模型融入到Graph... 在医学图像处理中,右心室分割在临床医学诊断和对病情的定量分析中有着越来越重要的意义。由于心脏MR图像右心室具有高变异、壁薄、边界不明显的特点,论文利用2D-Gabor对心脏图像进行滤波处理,得到特征图像,借助高斯混合模型融入到Graph cuts算法中,完成右心室MR图像的分割。相比于经典算法,该方法在稳定性及准确率上都有较好的效果。 展开更多
关键词 2D-Gabor graph CUTS 右心室分割
在线阅读 下载PDF
2-Walk Linear Graphs with Small Number of Cycles 被引量:1
20
作者 FAN Qiong QI Huan 《Wuhan University Journal of Natural Sciences》 CAS 2010年第5期375-379,共5页
A graph has exactly two main eigenvalues if and only if it is a 2-walk linear graph.In this paper,we show some necessary conditions that a 2-walk(a,b)-linear graph must obey.Using these conditions and some basic the... A graph has exactly two main eigenvalues if and only if it is a 2-walk linear graph.In this paper,we show some necessary conditions that a 2-walk(a,b)-linear graph must obey.Using these conditions and some basic theorems in graph theory,we characterize all 2-walk linear graphs with small cyclic graphs without pendants.The results are given in sort on unicyclic,bicyclic,tricyclic graphs. 展开更多
关键词 2-walk linear graphs unicyclic graphs bicyclic graphs tricyclic graphs
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部