Background:Nuclear receptor-binding SET domain 2(NSD2)is a histone methyltrans-ferase,that catalyzes dimethylation of lysine 36 of histone 3(H3K36me2)and is asso-ciated with active transcription of a series of genes.N...Background:Nuclear receptor-binding SET domain 2(NSD2)is a histone methyltrans-ferase,that catalyzes dimethylation of lysine 36 of histone 3(H3K36me2)and is asso-ciated with active transcription of a series of genes.NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prog-nosis in several types of tumors.Methods:We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells.We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer.The development of colorectal tumors were investigated using post-necropsy quantification,immunohistochemistry,and enzyme-linked immunosorbent assay(ELISA).Results:Compared with wild-type(WT)control mice,NSD2^(fl/fl)-Vil1-Cre mice exhib-ited significantly decreased tumor numbers,histopathological changes,and cytokine expression in colorectal tumors.Conclusions:Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.展开更多
Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs ...Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs are applied to the same engineering tasks, they are different in many aspects. These two programs were compared according to their fundamental theories, input and output data, computational algorithms and results. Using both programs, the simulations of a real debris flow with abundant granular material induced by landslides at Xinfa village in southern Taiwan are performed for comparison. The simulation results show that Debris- 2D gives better assessment in hazard area delineating and flow depth predicting. Therefore, Debris-2D is better for simulation of granular debris flows.展开更多
Pathogen-associated molecular patterns(PAMPs)-triggered immunity(PTI)is an important component of plant innate immunity.In a previous study,we showed that the PAMP flg22 from Xanthomonas citri ssp.citri(Xflg22),the ca...Pathogen-associated molecular patterns(PAMPs)-triggered immunity(PTI)is an important component of plant innate immunity.In a previous study,we showed that the PAMP flg22 from Xanthomonas citri ssp.citri(Xflg22),the causal agent of citrus canker,induced PTI in citrus,which correlated with the observed levels of canker resistance.Here,we identified and sequenced two bacterial flagellin/flg22 receptors(FLS2-1 and FLS2-2)from‘Duncan’grapefruit(Citrus paradisi,CpFLS2-1 and CpFLS2-2)and‘Sun Chu Sha’mandarin(C.reticulata,CrFLS2-1 and CrFLS2-2).We were able to isolate only one FLS2 from‘Nagami’kumquat(Fortunella margarita,FmFLS2-1)and gene flanking sequences suggest a rearrangement event that resulted in the deletion of FLS2-2 from the genome.Phylogenetic analysis,gene structure and presence of critical amino acid domains all indicate we identified the true FLS2 genes in citrus.FLS2-2 was more transcriptionally responsive to Xflg22 than FLS2-1,with induced expression levels higher in canker-resistant citrus than in susceptible ones.Interestingly,‘Nagami’kumquat showed the highest FLS2-1 steady-state expression levels,although it was not induced by Xflg22.We selected FmFLS2-1,CrFLS2-2 and CpFLS2-2 to further evaluate their capacity to enhance bacterial resistance using Agrobacterium-mediated transient expression assays.Both FmFLS2-1 and CrFLS2-2,the two proteins from canker-resistant species,conferred stronger Xflg22 responses and reduced canker symptoms in leaves of the susceptible grapefruit genotype.These two citrus genes will be useful resources to enhance PTI and achieve resistance against canker and possibly other bacterial pathogens in susceptible citrus types.展开更多
The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In thi...The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In this study,we assessed the long-term average and spatial-temporal variability of global air-sea CO_(2) exchange fl ux(F CO_(2))since 1980s basing on the results of 18 Coupled Model Intercomparison Project Phase 6(CMIP6)Earth System Models(ESMs).Our fi ndings indicate that the CMIP6 ESMs simulated global CO_(2) sink in recent three decades ranges from 1.80 to 2.24 Pg C/a,which is coincidence with the results of cotemporaneous observations.What’s more,the CMIP6 ESMs consistently show that the global oceanic CO_(2) sink has gradually intensifi ed since 1980s as well as the observations.This study confi rms the simulated F CO_(2) could reach agreements with the observations in the aspect of primary climatological characteristics,however,the simulation skills of CIMP6 ESMs in diverse open-sea biomes are unevenness.None of the 18 CMIP6 ESMs could reproduce the observed F CO_(2) increasement in the central-eastern tropical Pacifi c and the midlatitude Southern Ocean.Defi ciencies of some CMIP6 ESMs in reproducing the atmospheric pressure systems of the Southern Hemisphere and the El Niño-Southern Oscillation(ENSO)mode of the tropical Pacifi c are probably the major causes.展开更多
Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sourc...Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sources such as solar energy are green and promising energy in the future for widespread use. Combining renewable energy sources with battery makes electricity supply more economical and reliable to meet all possible load level. This paper proposed a new hybrid method to optimize Photovoltaic (PV)-Battery systems. The proposed method was named Interval type-2 fuzzy adaptive genetic algorithm (IT2FAGA). Genetic algorithm (GA) is one of modern optimization techniques that has been successfully applied in various areas of power systems. To enhance the ability of GA to prevent trapping in? local optima and increase convergence in a global optima, the crossover probability (pcross) and the mutation probability (pmut), parameters in GA, are tuned using interval type-2 fuzzy logic (IT2FL). Objective function used in this paper was the annual cost of sytem (ACS) consisting of the annual capital cost (ACC), annual replacement cost (ARC), annual operation cost maintenance (AOM). The proposed method was also compared to fuzzy adaptive genetic algorithm (FGA) and standard genetic algorithm (SGA). Simulation results indicated that the展开更多
Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Px...Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control.展开更多
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li...Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.展开更多
基金supported by the National Key Research and Development Program of China (2022YFF0710705)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-0 13)+2 种基金funding support from the Special Research Fund for Central UniversitiesPeking Union Medical College (3332022182)the 111 Project (B20095)
文摘Background:Nuclear receptor-binding SET domain 2(NSD2)is a histone methyltrans-ferase,that catalyzes dimethylation of lysine 36 of histone 3(H3K36me2)and is asso-ciated with active transcription of a series of genes.NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prog-nosis in several types of tumors.Methods:We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells.We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer.The development of colorectal tumors were investigated using post-necropsy quantification,immunohistochemistry,and enzyme-linked immunosorbent assay(ELISA).Results:Compared with wild-type(WT)control mice,NSD2^(fl/fl)-Vil1-Cre mice exhib-ited significantly decreased tumor numbers,histopathological changes,and cytokine expression in colorectal tumors.Conclusions:Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.
基金support from National Science Council of Chinese Taipei(Grant No.NSC 96-2625-Z-002-006-MY3)
文摘Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs are applied to the same engineering tasks, they are different in many aspects. These two programs were compared according to their fundamental theories, input and output data, computational algorithms and results. Using both programs, the simulations of a real debris flow with abundant granular material induced by landslides at Xinfa village in southern Taiwan are performed for comparison. The simulation results show that Debris- 2D gives better assessment in hazard area delineating and flow depth predicting. Therefore, Debris-2D is better for simulation of granular debris flows.
基金This research was financially supported by the Citrus Research and Development Foundation(CRDF).
文摘Pathogen-associated molecular patterns(PAMPs)-triggered immunity(PTI)is an important component of plant innate immunity.In a previous study,we showed that the PAMP flg22 from Xanthomonas citri ssp.citri(Xflg22),the causal agent of citrus canker,induced PTI in citrus,which correlated with the observed levels of canker resistance.Here,we identified and sequenced two bacterial flagellin/flg22 receptors(FLS2-1 and FLS2-2)from‘Duncan’grapefruit(Citrus paradisi,CpFLS2-1 and CpFLS2-2)and‘Sun Chu Sha’mandarin(C.reticulata,CrFLS2-1 and CrFLS2-2).We were able to isolate only one FLS2 from‘Nagami’kumquat(Fortunella margarita,FmFLS2-1)and gene flanking sequences suggest a rearrangement event that resulted in the deletion of FLS2-2 from the genome.Phylogenetic analysis,gene structure and presence of critical amino acid domains all indicate we identified the true FLS2 genes in citrus.FLS2-2 was more transcriptionally responsive to Xflg22 than FLS2-1,with induced expression levels higher in canker-resistant citrus than in susceptible ones.Interestingly,‘Nagami’kumquat showed the highest FLS2-1 steady-state expression levels,although it was not induced by Xflg22.We selected FmFLS2-1,CrFLS2-2 and CpFLS2-2 to further evaluate their capacity to enhance bacterial resistance using Agrobacterium-mediated transient expression assays.Both FmFLS2-1 and CrFLS2-2,the two proteins from canker-resistant species,conferred stronger Xflg22 responses and reduced canker symptoms in leaves of the susceptible grapefruit genotype.These two citrus genes will be useful resources to enhance PTI and achieve resistance against canker and possibly other bacterial pathogens in susceptible citrus types.
基金Supported by the National Natural Science Foundation of China(No.41806133)the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2022QNLM040003-1)+1 种基金the National Key Research and Development Program of China(No.2017YFA0603204)the Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry,MNR(No.GCMAC1905)。
文摘The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In this study,we assessed the long-term average and spatial-temporal variability of global air-sea CO_(2) exchange fl ux(F CO_(2))since 1980s basing on the results of 18 Coupled Model Intercomparison Project Phase 6(CMIP6)Earth System Models(ESMs).Our fi ndings indicate that the CMIP6 ESMs simulated global CO_(2) sink in recent three decades ranges from 1.80 to 2.24 Pg C/a,which is coincidence with the results of cotemporaneous observations.What’s more,the CMIP6 ESMs consistently show that the global oceanic CO_(2) sink has gradually intensifi ed since 1980s as well as the observations.This study confi rms the simulated F CO_(2) could reach agreements with the observations in the aspect of primary climatological characteristics,however,the simulation skills of CIMP6 ESMs in diverse open-sea biomes are unevenness.None of the 18 CMIP6 ESMs could reproduce the observed F CO_(2) increasement in the central-eastern tropical Pacifi c and the midlatitude Southern Ocean.Defi ciencies of some CMIP6 ESMs in reproducing the atmospheric pressure systems of the Southern Hemisphere and the El Niño-Southern Oscillation(ENSO)mode of the tropical Pacifi c are probably the major causes.
文摘Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sources such as solar energy are green and promising energy in the future for widespread use. Combining renewable energy sources with battery makes electricity supply more economical and reliable to meet all possible load level. This paper proposed a new hybrid method to optimize Photovoltaic (PV)-Battery systems. The proposed method was named Interval type-2 fuzzy adaptive genetic algorithm (IT2FAGA). Genetic algorithm (GA) is one of modern optimization techniques that has been successfully applied in various areas of power systems. To enhance the ability of GA to prevent trapping in? local optima and increase convergence in a global optima, the crossover probability (pcross) and the mutation probability (pmut), parameters in GA, are tuned using interval type-2 fuzzy logic (IT2FL). Objective function used in this paper was the annual cost of sytem (ACS) consisting of the annual capital cost (ACC), annual replacement cost (ARC), annual operation cost maintenance (AOM). The proposed method was also compared to fuzzy adaptive genetic algorithm (FGA) and standard genetic algorithm (SGA). Simulation results indicated that the
基金supported by the National Natural Science Foundation of China(32172503 and 32260721)the Natural Science Foundation of Fujian Province,China(2023J01069)+2 种基金the State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,China(SKL2022001)the Innovation Fund of Fujan Agriculture and Forestry University,China(KFB23014A)the Undergraduate Training Program for Innovation and Entrepreneurship of Fujian Province,China(S202210389101).
文摘Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control.
文摘Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.