荧光分子断层成像技术(fluorescence molecular tomography,FMT)系统中为获得体内光源的结构信息,需要利用CT体数据。FMT系统在进行光学图像与CT图像的配准时,由于两种模态图像的成像原理、图像风格和图像维度等方面的差异,导致传统配...荧光分子断层成像技术(fluorescence molecular tomography,FMT)系统中为获得体内光源的结构信息,需要利用CT体数据。FMT系统在进行光学图像与CT图像的配准时,由于两种模态图像的成像原理、图像风格和图像维度等方面的差异,导致传统配准方法耗时长、效果差。本研究提出了一种基于T2DR-Net(texture transfer and dense registration net)与互信息的光学-CT图像配准方法,实现FMT系统中白光图像与CT图像的配准。该方法将光学-CT图像配准分为粗配准和精配准两个部分。在粗配准阶段,利用CycleGAN实现了FMT白光图像和CT投影像的纹理迁移,以降低两种图像纹理差异对图像配准的影响,并提出了DenseReg-Net模型获取白光图像和CT投影像粗配准参数;在精配准阶段,通过互信息方法进一步对两种模态图像配准,并得到最终的配准结果。利用1330张光学图像和39711张CT投影像作为样本集来验证配准方法的有效性,实验结果表明,本研究提出的光学-CT图像配准方法,相关系数为0.8797±0.0175,结构相似性为0.8683±0.0051,模型配准时间为(2.88±1.39)s。模型的配准效果及其稳定性优于传统方法。此外,与传统方法相比,速度提升了约60倍。展开更多
X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. Howe...X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.展开更多
文摘荧光分子断层成像技术(fluorescence molecular tomography,FMT)系统中为获得体内光源的结构信息,需要利用CT体数据。FMT系统在进行光学图像与CT图像的配准时,由于两种模态图像的成像原理、图像风格和图像维度等方面的差异,导致传统配准方法耗时长、效果差。本研究提出了一种基于T2DR-Net(texture transfer and dense registration net)与互信息的光学-CT图像配准方法,实现FMT系统中白光图像与CT图像的配准。该方法将光学-CT图像配准分为粗配准和精配准两个部分。在粗配准阶段,利用CycleGAN实现了FMT白光图像和CT投影像的纹理迁移,以降低两种图像纹理差异对图像配准的影响,并提出了DenseReg-Net模型获取白光图像和CT投影像粗配准参数;在精配准阶段,通过互信息方法进一步对两种模态图像配准,并得到最终的配准结果。利用1330张光学图像和39711张CT投影像作为样本集来验证配准方法的有效性,实验结果表明,本研究提出的光学-CT图像配准方法,相关系数为0.8797±0.0175,结构相似性为0.8683±0.0051,模型配准时间为(2.88±1.39)s。模型的配准效果及其稳定性优于传统方法。此外,与传统方法相比,速度提升了约60倍。
基金Supported by the KIST institutional program(2E26880,2E26276)
文摘X-ray imaging is the conventional method for diagnosing the orthopedic condition of a patient. Computerized Tomography(CT) scanning is another diagnostic method that provides patient’s 3D anatomical information. However, both methods have limitations when diagnosing the whole leg; X-ray imaging does not provide 3D information, and normal CT scanning cannot be performed with a standing posture. Obtaining 3D data regarding the whole leg in a standing posture is clinically important because it enables 3D analysis in the weight bearing condition.Based on these clinical needs, a hardware-based bi-plane X-ray imaging system has been developed; it uses two orthogonal X-ray images. However, such methods have not been made available in general clinics because of the hight cost. Therefore, we proposed a widely adaptive method for 2 D X-ray image and 3D CT scan data. By this method, it is possible to threedimensionally analyze the whole leg in standing posture. The optimal position that generates the most similar image is the captured X-ray image. The algorithm verifies the similarity using the performance of the proposed method by simulation-based experiments. Then, we analyzed the internal-external rotation angle of the femur using real patient data. Approximately 10.55 degrees of internal rotations were found relative to the defined anterior-posterior direction. In this paper, we present a useful registration method using the conventional X-ray image and 3D CT scan data to analyze the whole leg in the weight-bearing condition.