Recently,two-dimensional(2D)transition metal carbides and carbonitrides(MXenes),have shown great potential in micro-supercapacitors(MSCs).However,the maximum voltage output of symmetric MXene MSCs is limited to 0.6 V ...Recently,two-dimensional(2D)transition metal carbides and carbonitrides(MXenes),have shown great potential in micro-supercapacitors(MSCs).However,the maximum voltage output of symmetric MXene MSCs is limited to 0.6 V due to the oxidation effects at high anodic potentials.Herein,we developed asymmetric micro-supercapacitors(AMSCs)based on titanium carbide MXene(Ti_(3)C_(2)Tx)and MXene-MoO_(2) electrodes with an enlarged voltage window of 1.2 V,which is twice wider than that of symmetric MXene MSCs.The 2D-0D MXene-MoO_(2) microelectrode is fabricated by homogenous dispersing zerodimensional(0D)MoO_(2) nanoparticles into MXene layers to impede layers stacking and MoO_(2) nanoparticles aggregation.Notably,the AMSCs delivered good electrochemical performances of areal capacitance of ~19 mF cm^(-2) and volumetric capacitance of 63 F cm^(-3) at a scan rate of 2 mV s^(-1),and high energy density of 9.7 mW h cm^(-3) at a power density of 0.198 W cm^(-3).The AMSCs also presented exceptionally mechanical flexibility under different bending states and excellent cyclic stability,with 88% capacitance retention after 10000 cycles at a discharge current density of 0.5 mA cm^(-2).For practical application,the serially connected AMSCs are fully affordable to power electronics,which is beneficial for soft and wearable power devices.展开更多
Carbon dots(C-Dots)have received much attention in photocatalyst design and mechanism studies due to their precise size control,unique photoelectrical properties,and abundant surface-active sites,but their catalytic p...Carbon dots(C-Dots)have received much attention in photocatalyst design and mechanism studies due to their precise size control,unique photoelectrical properties,and abundant surface-active sites,but their catalytic performance is still limited by issues such as severe charge recombination,agglomeration,and poor stability,which mainly stem from the small size and high surface area.A major solution to these problems is loading the zero-dimensional(0D)C-Dots onto ultrathin two-dimensional(2D)nanosheets to form 0D/2D nanocomposites.In this review,we systematically introduce the progress on the design and construction of 0D/2D heterojunction photocatalysts based on C-Dots,and their applications across different photocatalytic reactions,such as hydrogen production,carbon dioxide reduction,and hydrogen peroxide synthesis.We also discuss the key role of various types of 0D/2D heterojunctions according to different photocatalytic mechanisms and corresponding promoting strategies for enhancing the catalytic activity,accelerating charge transfer,and coupling different sites for the surface oxidation/reduction reactions.Finally,the challenges and future research directions associated with these systems are discussed.展开更多
MXenes,a new family of two-dimensional(2D)materials with excellent electronic conductivity and hydrophilicity,have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes.Her...MXenes,a new family of two-dimensional(2D)materials with excellent electronic conductivity and hydrophilicity,have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes.Herein,a facile electrostatic self-assembly of SnO2 quantum dots(QDs)on Ti3C2Tx MXene sheets is proposed.The as-prepared SnO2/MXene hybrids have a unique 0D-2D structure,in which the 0D SnO2 QDs(~4.7 nm)are uniformly distributed over 2D Ti3C2Tx MXene sheets with controllable loading amount.The SnO2 QDs serve as a high capacity provider and the“spacer”to prevent the MXene sheets from restacking;the highly conductive Ti3C2Tx MXene can not only provide efficient pathways for fast transport of electrons and Li ions,but also buffer the volume change of SnO2 during lithiation/delithiation by confining SnO2 QDs between the MXene nanosheets.Therefore,the 0D-2D SnO2 QDs/MXene hybrids deliver superior lithium storage properties with high capacity(887.4 mAh g?1 at 50 mA g?1),stable cycle performance(659.8 mAh g?1 at 100 mA g?1 after 100 cycles with a capacity retention of 91%)and excellent rate performance(364 mAh g?1 at 3 A g?1),making it a promising anode material for lithium-ion batteries.展开更多
基金financially supported by the Australian Research Council Discovery Program(DP190103290)Australian Research Council Discovery Early Career Researcher Award scheme(DE150101617).
文摘Recently,two-dimensional(2D)transition metal carbides and carbonitrides(MXenes),have shown great potential in micro-supercapacitors(MSCs).However,the maximum voltage output of symmetric MXene MSCs is limited to 0.6 V due to the oxidation effects at high anodic potentials.Herein,we developed asymmetric micro-supercapacitors(AMSCs)based on titanium carbide MXene(Ti_(3)C_(2)Tx)and MXene-MoO_(2) electrodes with an enlarged voltage window of 1.2 V,which is twice wider than that of symmetric MXene MSCs.The 2D-0D MXene-MoO_(2) microelectrode is fabricated by homogenous dispersing zerodimensional(0D)MoO_(2) nanoparticles into MXene layers to impede layers stacking and MoO_(2) nanoparticles aggregation.Notably,the AMSCs delivered good electrochemical performances of areal capacitance of ~19 mF cm^(-2) and volumetric capacitance of 63 F cm^(-3) at a scan rate of 2 mV s^(-1),and high energy density of 9.7 mW h cm^(-3) at a power density of 0.198 W cm^(-3).The AMSCs also presented exceptionally mechanical flexibility under different bending states and excellent cyclic stability,with 88% capacitance retention after 10000 cycles at a discharge current density of 0.5 mA cm^(-2).For practical application,the serially connected AMSCs are fully affordable to power electronics,which is beneficial for soft and wearable power devices.
基金supported by the National Natural Science Foundation of China(22278194 and 21908081)
文摘Carbon dots(C-Dots)have received much attention in photocatalyst design and mechanism studies due to their precise size control,unique photoelectrical properties,and abundant surface-active sites,but their catalytic performance is still limited by issues such as severe charge recombination,agglomeration,and poor stability,which mainly stem from the small size and high surface area.A major solution to these problems is loading the zero-dimensional(0D)C-Dots onto ultrathin two-dimensional(2D)nanosheets to form 0D/2D nanocomposites.In this review,we systematically introduce the progress on the design and construction of 0D/2D heterojunction photocatalysts based on C-Dots,and their applications across different photocatalytic reactions,such as hydrogen production,carbon dioxide reduction,and hydrogen peroxide synthesis.We also discuss the key role of various types of 0D/2D heterojunctions according to different photocatalytic mechanisms and corresponding promoting strategies for enhancing the catalytic activity,accelerating charge transfer,and coupling different sites for the surface oxidation/reduction reactions.Finally,the challenges and future research directions associated with these systems are discussed.
基金supported by the National Key Research and Development Program of China“New Energy Project for Electric Vehicle”(2016YFB0100204)the National Natural Science Foundation of China(Nos.51772030,21805011,51572011,51802012)+2 种基金the Joint Funds of the National Natural Science Foundation of China(U1564206)Beijing Key Research and Development Plan(Z181100004518001)China Postdoctoral Science Foundation(Nos.2017M620637,2018M643697,2019T120930).
文摘MXenes,a new family of two-dimensional(2D)materials with excellent electronic conductivity and hydrophilicity,have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes.Herein,a facile electrostatic self-assembly of SnO2 quantum dots(QDs)on Ti3C2Tx MXene sheets is proposed.The as-prepared SnO2/MXene hybrids have a unique 0D-2D structure,in which the 0D SnO2 QDs(~4.7 nm)are uniformly distributed over 2D Ti3C2Tx MXene sheets with controllable loading amount.The SnO2 QDs serve as a high capacity provider and the“spacer”to prevent the MXene sheets from restacking;the highly conductive Ti3C2Tx MXene can not only provide efficient pathways for fast transport of electrons and Li ions,but also buffer the volume change of SnO2 during lithiation/delithiation by confining SnO2 QDs between the MXene nanosheets.Therefore,the 0D-2D SnO2 QDs/MXene hybrids deliver superior lithium storage properties with high capacity(887.4 mAh g?1 at 50 mA g?1),stable cycle performance(659.8 mAh g?1 at 100 mA g?1 after 100 cycles with a capacity retention of 91%)and excellent rate performance(364 mAh g?1 at 3 A g?1),making it a promising anode material for lithium-ion batteries.