This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and l...As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.展开更多
A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the co...A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.展开更多
The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considerin...The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.展开更多
This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the...This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
基金the National Natural Science Foundation of China (No. 10872128)
文摘As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.
基金The project supported by the National Natural Science Foundation of China (19772025)
文摘A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.
文摘The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.
基金Project supported by the National Natural Science Foundation of China(No.11074170)the State Key Laboratory Foundation of Shanghai Jiao Tong University(No.MSVMS201105)
文摘This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.