期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
Physics of 2D Materials for Developing Smart Devices 被引量:1
1
作者 Neeraj Goel Rahul Kumar 《Nano-Micro Letters》 2025年第8期449-490,共42页
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing com... Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed. 展开更多
关键词 2d materials HETEROSTRUCTURES Smart devices Van der Waals Flexible electronics
在线阅读 下载PDF
Controlling interfacial adhesion during the transfer of large-area 2D materials:mechanisms,strategies,and research advances
2
作者 HU Rong SONG Jia +4 位作者 HUANG Wei ZHOU An-na LIN Jia-long CAO Yang HU Sheng 《新型炭材料(中英文)》 北大核心 2025年第3期553-583,共31页
Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrat... Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development. 展开更多
关键词 2d materials GRAPHENE LARGE-AREA Interfacial adhesion modulation High quality transfer
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
3
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2d materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
Adhesion of 2D Materials: Measurement and Modulation
4
作者 Na Li Hongrong Wu +1 位作者 Changwei Sun Junhua Zhao 《Acta Mechanica Solida Sinica》 2025年第2期252-274,共23页
Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and ... Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials. 展开更多
关键词 2d materials ADHESION MEASUREMENT MODULATION
原文传递
Solution-based manufacturing of 2D materials for memristive device applications
5
作者 Kijeong Nam Gwang Ya Kim +3 位作者 Dongjoon Rhee Hyesung Park Deep Jariwala Joohoon Kang 《International Journal of Extreme Manufacturing》 2025年第5期1-50,共50页
Two-dimensional (2D) materials have attracted significant attention as resistive switching materials for two-terminal non-volatile memory devices, often referred to as memristors, due to their potential for achieving ... Two-dimensional (2D) materials have attracted significant attention as resistive switching materials for two-terminal non-volatile memory devices, often referred to as memristors, due to their potential for achieving fast switching speeds and low power consumption. Their excellent gate tunability in electronic properties also enables hybrid devices combining the functionality of memory devices and transistors, with the possibility of realizing large-scale memristive crossbar arrays with high integration density. To facilitate the use of 2D materials in practical memristor applications, scalable synthesis of 2D materials with high electronic quality is critical. In addition, low-temperature integration for complementary metal oxide semiconductor (CMOS) back-end-of-line (BEOL) integration is important for embedded memory applications. Solution-based exfoliation has been actively explored as a facile, cost-effective method for the mass production and low-temperature integration of 2D materials. However, the films produced from the resulting 2D nanosheet dispersions exhibited poor electrical properties in the early stages of research, thereby hindering their use in electronic devices. Recent progress in the exfoliation process and post-processing has led to significant improvements in the electronic performance of solution-processed 2D materials, driving increased adoption of these materials in memristor research. In this review article, we provide a thorough overview of the progress and current status of memristive devices utilizing solution-processed 2D resistive switching layers. We begin by introducing the electrical characteristics and resistive switching mechanisms of memristors fabricated with conventional materials to lay the groundwork for understanding memristive behavior in 2D materials. Representative solution-based exfoliation and film formation techniques are also introduced, emphasizing the benefits of these approaches for obtaining scalable 2D material films compared to conventional methods such as mechanical exfoliation and chemical vapor deposition. Finally, we explore the electrical characteristics, resistive switching mechanisms, and applications of solution-processed 2D memristive devices, discussing their advantages and remaining challenges. 展开更多
关键词 memristor neuromorphic device 2d materials solution-based manufacturing
在线阅读 下载PDF
Measuring Mechanical Parameters of 2D Materials Based on the Bulge Test
6
作者 Xuwei Cui Wenlong Dong +3 位作者 Yuan Hou Guorui Wang Luqi Liu Zhong Zhang 《Acta Mechanica Solida Sinica》 2025年第2期218-228,共11页
The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary condition... The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary conditions dominated by weak van der Waals forces significantly impact mechanical responses.Instead of sample fracture,interfacial shear deformation and delamination become the primary deformation modes,thereby challenging the applicability of conventional bulge models.To accommodate the interfacial effect,a modified mechanical model based on the bulge test has been proposed.This review summarizes recent advancements in the bulge test to highlight the potential challenges and opportunities for future research. 展开更多
关键词 Bulge test 2d material Mechanical parameters Interfacial properties
原文传递
Recent progress in flexible sensors based on 2D materials
7
作者 Xiang Li Guancheng Wu +1 位作者 Caofeng Pan Rongrong Bao 《Journal of Semiconductors》 2025年第1期130-142,共13页
With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition... With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized. 展开更多
关键词 2d materials flexible sensors layered structure solution method
在线阅读 下载PDF
Advance in reversible Zn anodes promoted by 2D materials 被引量:7
8
作者 Shu-Yuan Lei Jin-Xiu Feng +5 位作者 Yu-Chao Chen Dong Zheng Wen-Xian Liu Wen-Hui Shi Fang-Fang Wu Xie-Hong Cao 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1350-1369,共20页
With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,... With the growing energy demand associated with high safety and low-cost requirement,aqueous zinc-ion batteries(AZIBs)have been considered as one of the most promising next-generation batteries.However,some key issues,such as uncontrollable dendrites growth,severe corrosion,hydrogen evolution and side reactions of Zn anodes during charge/discharge process,have hindered its pragmatic applications.Two-dimensional(2D)materials hold advantages of unique physical and chemical properties,large surface areas and abundant active sites,which have been successfully used to overcome the above shortcomings of Zn anodes in recent years.In this review,the issues and challenges of Zn anodes are outlined.Then,the state-of-the-art progress on Zn anodes modification based on 2D materials such as graphene,2D metal carbides and nitrides(MXenes),2D metal-organic frameworks(MOFs),2D covalent organic frameworks(COFs),2D transition metal compounds and other 2D materials is discussed in detail.Finally,the perspectives of employing 2D materials in highly reversible Zn anodes are summarized and discussed. 展开更多
关键词 2d materials Aqueous zinc-ion battery Zn anodes Dendrites growth
原文传递
Recent Advances in In-Memory Computing:Exploring Memristor and Memtransistor Arrays with 2D Materials 被引量:3
9
作者 Hangbo Zhou Sifan Li +1 位作者 Kah-Wee Ang Yong-Wei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期1-30,共30页
The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising altern... The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices. 展开更多
关键词 2d materials MEMRISTORS Memtransistors Crossbar array In-memory computing
在线阅读 下载PDF
Electronic properties of 2D materials and their junctions 被引量:1
10
作者 Taposhree Dutta Neha Yadav +8 位作者 Yongling Wu Gary J.Cheng Xiu Liang Seeram Ramakrishna Aoussaj Sbai Rajeev Gupta Aniruddha Mondal Zheng Hongyu Ashish Yadav 《Nano Materials Science》 EI CAS CSCD 2024年第1期1-23,共23页
With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2... With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future. 展开更多
关键词 2d materials Electrical properties p-n junctions Mixed hereto junctions Homo junctions Electrical transport
在线阅读 下载PDF
MXenes: Versatile 2D materials with tailored surface chemistry and diverse applications
11
作者 Sunil Kumar Nitu Kumari Yongho Seo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期253-293,I0008,共42页
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str... MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation. 展开更多
关键词 MXenes 2d materials Surface chemistry MXenes structure SYNTHESIS APPLICATIONS
在线阅读 下载PDF
Van der Waals gap engineering in 2D materials for energy storage and conversion
12
作者 Qian Chen Yi Wei +1 位作者 Peng-Bo Zhai Yong-Ji Gong 《Rare Metals》 CSCD 2024年第12期6125-6143,共19页
Since the discovery of two-dimensional(2D)materials,they have garnered significant attention from researchers owing to the exceptional and modifiable physical and chemical properties.The weak interlayer interactions i... Since the discovery of two-dimensional(2D)materials,they have garnered significant attention from researchers owing to the exceptional and modifiable physical and chemical properties.The weak interlayer interactions in 2D materials enable precise control over Van der Waals gaps,thereby enhancing their performance and introducing novel characteristics.By regulating the Van der Waals gap,2D materials exhibit a diverse range of applications in the field of energy storage and conversion.This article provides a comprehensive review of various methods for manipulating Van der Waals gaps in 2D materials,including interlayer intercalation,vip atom doping within the lattice,formation of Van der Waals heterojunctions,and adjustment of stacking modes.Moreover,the impacts of these manipulations on energy storage and conversion applications are also summarized.Finally,potential future research directions are proposed to shed light on advancements in Van der Waals gap engineering. 展开更多
关键词 2d materials Van der Waals gap engineering Interlayer intercalation Performance optimization Energy storage and conversion
原文传递
Room-Temperature Gas Sensors Under Photoactivation:From Metal Oxides to 2D Materials 被引量:12
13
作者 Rahul Kumar Xianghong Liu +1 位作者 Jun Zhang Mahesh Kumar 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期292-328,共37页
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio... Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. 展开更多
关键词 Gas sensor Room temperature PHOTOACTIVATION Metal oxide 2d materials
在线阅读 下载PDF
Recent advances in graphene and other 2D materials 被引量:10
14
作者 Pablo Ares Kostya S.Novoselov 《Nano Materials Science》 EI CAS CSCD 2022年第1期3-9,共7页
The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its i... The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its isolation and subsequent studies demonstrated that it was possible to obtain sheets of atomically thin crystals and that these were stable, and they also began to show its outstanding properties, thus opening the door to a whole new family of materials, known as two-dimensional materials or 2D materials. The great interest in different 2D materials is motivated by the variety of properties they show, being candidates for numerous applications.Additionally, the combination of 2D crystals allows the assembly of composite, on-demand materials, known as van der Waals heterostructures, which take advantage of the properties of those materials to create functionalities that otherwise would not be accessible. For example, the combination of 2D materials, which can be done with high precision, is opening up opportunities for the study of new challenges in fundamental physics and novel applications. Here we review the latest fundamental discoveries in the area of 2D materials and offer a perspective on the future of the field. 展开更多
关键词 2d materials GRAPHENE Molybdenum disulphide Tarition mebl dichalogenides Hexagonal boron nitride van der waals heterostructus Ulrathin nanomaterials
在线阅读 下载PDF
2D materials modulating layered double hydroxides for electrocatalytic water splitting 被引量:7
15
作者 Jinling Cheng Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1380-1398,共19页
Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered doubl... Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage. 展开更多
关键词 Layered double hydroxide 2d materials HYBRIDIZATION Synergistic effect Electrocatalytic water splitting
在线阅读 下载PDF
All boron-based 2D material as anode material in Li-ion batteries 被引量:4
16
作者 Ning Jiang Biao Li +1 位作者 Fanghua Ning Dingguo Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1651-1654,共4页
To design the high-energy-density Li-ion batteries, the anode materials with high specific capacity haveattracted much attention. In this work, we adopt the first principles calculations to investigate the pos-sibilit... To design the high-energy-density Li-ion batteries, the anode materials with high specific capacity haveattracted much attention. In this work, we adopt the first principles calculations to investigate the pos-sibility of a new two dimensional boron material, named Be, as anode material for Li-ion batteries. Thecalculated results show that the maximum theoretical specific capacity of Bc is 1653mAh g-1 (LiBl.s).Additionally, the energy barriers of Li ion and Li vacancy diffusion are 330 meV and 110 meV, respec-tively, which imply fast charge and discharge ability for B6 as an anode material. The theoretical findingsreported in this work suggest that BG is a potential candidate as anode material of high-energy-density Li-ion batteries. 展开更多
关键词 Ali boron-based 2d material Anode materials Li-ion batteries First principles calculations
在线阅读 下载PDF
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges 被引量:2
17
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery Large-scale energy storage application Zn anode LIFESPAN 2d materials
在线阅读 下载PDF
Recent progress in 2D materials for flexible supercapacitors 被引量:11
18
作者 Yan Han Yu Ge +2 位作者 Yunfeng Chao Caiyun Wang Gordon G.Wallace 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期57-72,共16页
High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attr... High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attracted attention owing to their unique physicochemical and electrochemical properties, in addition to their ability to form hetero-structures with other nanomaterials further improving mechanical and electrochemical properties. After a brief introduction of supercapacitors and 2D materials, recent progress on flexible supercapacitors using 2D materials is reviewed. Here we provide insights into the structure–property relationships of flexible electrodes, in particular free-standing films. We also present our perspectives on the development of flexible supercapacitors. 展开更多
关键词 2d materials Flexible supercapacitors Graphene Molybdenum disulfide MXenes
在线阅读 下载PDF
Recent progress in solution assembly of 2D materials for wearable energy storage applications 被引量:1
19
作者 Dong Zhou Liang Zhao Bo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期27-42,I0002,共17页
Wearable energy storage devices are desirable to boost the rapid development of flexible and stretchable electronics. Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides and oxides, and MX... Wearable energy storage devices are desirable to boost the rapid development of flexible and stretchable electronics. Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides and oxides, and MXenes, have attracted intensive attention for flexible energy storage applications because of their ultrathin 2D structures, high surface-to-volume ratio, and unique physical/chemical properties. To achieve commercialization of 2D material-based wearable energy storage devices (2DM-WESDs), scalable and cost-efficient manufacturing is a critical challenge. Among existing manufacturing technologies, solution-based assembly strategies show strong potential to achieve low-cost and scalable production. A timely review of the recent progress in solution-based assembly strategies and the resultant 2DM-WESDs will be meaningful to guide the future development of 2DM-WESDs. In this review, first, a brief introduction of exfoliation and solution preparation of 2D material species from bulk materials is discussed. Then, the solution-based assembly strategies are summarized, and the advantages and disadvantages of each method are compared. After that, two major categories of 2DM-WESDs, supercapacitor and battery, are discussed, emphasizing their state-of-the-art energy storage performances and flexibilities. Finally, insights and perspectives on current challenges and future opportunities regarding the solution assembly of 2DM-WESDs are discussed. 展开更多
关键词 2d materials Solution assembly WEARABLE Energy storage
在线阅读 下载PDF
Harnessing the Unique Features of 2D Materials toward Dendrite-free Metal Anodes 被引量:1
20
作者 Zhenjiang Cao Yongzheng Zhang +7 位作者 Yanglansen Cui Jianan Gu Zhiguo Du Yongzheng Shi Kai Shen Hao Chen Bin Li Shubin Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期45-67,共23页
Electrochemically active metal anodes,such as lithium,sodium,potassium,and zinc,have attracted great research interests in the advanced rechargeable batteries owing to their superior theoretical energy densities.Unfor... Electrochemically active metal anodes,such as lithium,sodium,potassium,and zinc,have attracted great research interests in the advanced rechargeable batteries owing to their superior theoretical energy densities.Unfortunately,the metal anodes suffer from the huge volume changes with loss of active materials during the plating and stripping processes,resulting in fast capacity decay.Moreover,the random growth of dendrites on the metal anodes will penetrate the separator,causing severe safety issues.Engineering metal anodes by introducing the 2D materials are widely investigated to alleviate these issues.Benefitting from the ultrathin structure feature and unique electrical properties,2D materials are regarded as one of the best host of metal anodes.Besides,the tunable active sites on basal plane enable 2D materials to achieve favorable interaction with metal anodes.Moreover,some 2D materials exhibit good mechanical strength and flexibility,serving as building block for the artificial solid electrolyte interphase.In this review,we mainly disclosed the correlations between the intrinsic properties of 2D materials and their functions in guiding uniform nucleation,controlling the growth of metals,and accommodating the volume change.Also,the challenges of 2D materials in metal anodes are well discussed.Finally,the future directions to develop highperformance metal anodes by taking advantage of these unique features of 2D materials are proposed. 展开更多
关键词 2d materials metal anodes dendrite-free NUCLEATION high-energy density
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部