The indoor robots are expected to complete metric navigation tasks safely and efficiently in complex environments, which is the essential prerequisite for accomplishing other high-level operation tasks. 2 D occupancy ...The indoor robots are expected to complete metric navigation tasks safely and efficiently in complex environments, which is the essential prerequisite for accomplishing other high-level operation tasks. 2 D occupancy grid maps are sufficient to support the robots in avoiding all obstacles in the environments during navigation. However, the maps based on normal laser scans only reflect a horizontal slice of the environment, which may cause the problem of some obstacles missing or misinterpreting their exact boundaries,thereby threatening the safety and efficiency of robot navigation. This paper presents a 2 D mapping method based on virtual laser scans to provide a more comprehensive representation of obstacles for indoor robot navigation. The resulting maps can accurately represent the top-down projected contours of all obstacles no matter where their vertical positions are. The virtual laser scans are initially generated from raw data of an RGB-D camera based on the filtering, projection, and polar-coordinate scanning. The scans are fed directly to the laser-based simultaneous localization and mapping(SLAM) algorithms to update the current map and robot position. Two auxiliary strategies are proposed to further improve the quality of maps by reducing the impact of the narrow field of view and the blind zone of the RGB-D camera on the observations. In this paper, the improved virtual laser generation method makes the extracted 2 D observations fit the laser-based SLAM algorithms, and two auxiliary strategies are novel ways to improve map quality. The generated maps can reflect the comprehensive obstacle information in indoor environments with good accuracy. The comparative experiments are carried out based on four simulation scenarios and three real-world scenarios to prove the effectiveness of our 2 D mapping method.展开更多
Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micr...Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species.展开更多
Virtual Reality provides a new approach for geographical research. In this paper, a framework of the Virtual Huanghe (Yellow) River System was first presented from the view of technology, which included five main mo...Virtual Reality provides a new approach for geographical research. In this paper, a framework of the Virtual Huanghe (Yellow) River System was first presented from the view of technology, which included five main modules——data sources, 3D simulation terrain database, 3D simulation model database, 3D simulation implementation and application system. Then the key technoiogies of constructing Virtual Huanghe River System were discussed in detail: 1) OpenGL technology, the 3D graphics developing instrument, was employed in Virtual Huanghe River System to realize the function of dynamic real-time navigation. 2) MO and OpenGL technologies were used to make the mutual response between 3D scene and 2D electronic map available, which made use of the advantages of both 3D scene and 2D electronic map, with the macroscopic view, integrality and conciseness of 2D electronic map combined with the locality, reality and visualization of 3D scene. At the same time the disadvantages of abstract and ambiguity of 2D electronic map and the direction losing of virtual navigation in 3D scene were overcome.展开更多
Cities are in constant change and city managers aim to keep an updated digital model of the city for city governance. There are a lot of images uploaded daily on image sharing platforms (as “Flickr”, “Twitter”, et...Cities are in constant change and city managers aim to keep an updated digital model of the city for city governance. There are a lot of images uploaded daily on image sharing platforms (as “Flickr”, “Twitter”, etc.). These images feature a rough localization and no orientation information. Nevertheless, they can help to populate an active collaborative database of street images usable to maintain a city 3D model, but their localization and orientation need to be known. Based on these images, we propose the Data Gathering system for image Pose Estimation (DGPE) that helps to find the pose (position and orientation) of the camera used to shoot them with better accuracy than the sole GPS localization that may be embedded in the image header. DGPE uses both visual and semantic information, existing in a single image processed by a fully automatic chain composed of three main layers: Data retrieval and preprocessing layer, Features extraction layer, Decision Making layer. In this article, we present the whole system details and compare its detection results with a state of the art method. Finally, we show the obtained localization, and often orientation results, combining both semantic and visual information processing on 47 images. Our multilayer system succeeds in 26% of our test cases in finding a better localization and orientation of the original photo. This is achieved by using only the image content and associated metadata. The use of semantic information found on social media such as comments, hash tags, etc. has doubled the success rate to 59%. It has reduced the search area and thus made the visual search more accurate.展开更多
Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this two-part paper identifies an innovative,but realistic EO optical sensory imagederived semantics-enriched An...Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this two-part paper identifies an innovative,but realistic EO optical sensory imagederived semantics-enriched Analysis Ready Data(ARD)productpair and process gold standard as linchpin for success of a new notion of Space Economy 4.0.To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers,it is regarded as necessarybut-not-sufficient“horizontal”(enabling)precondition for:(I)Transforming existing EO big raster-based data cubes at the midstream segment,typically affected by the so-called data-rich information-poor syndrome,into a new generation of semanticsenabled EO big raster-based numerical data and vector-based categorical(symbolic,semi-symbolic or subsymbolic)information cube management systems,eligible for semantic content-based image retrieval and semantics-enabled information/knowledge discovery.(II)Boosting the downstream segment in the development of an ever-increasing ensemble of“vertical”(deep and narrow,user-specific and domain-dependent)value–adding information products and services,suitable for a potentially huge worldwide market of institutional and private end-users of space technology.For the sake of readability,this paper consists of two parts.In the present Part 1,first,background notions in the remote sensing metascience domain are critically revised for harmonization across the multidisciplinary domain of cognitive science.In short,keyword“information”is disambiguated into the two complementary notions of quantitative/unequivocal information-as-thing and qualitative/equivocal/inherently ill-posed information-as-data-interpretation.Moreover,buzzword“artificial intelligence”is disambiguated into the two better-constrained notions of Artificial Narrow Intelligence as part-without-inheritance-of AGI.Second,based on a betterdefined and better-understood vocabulary of multidisciplinary terms,existing EO optical sensory image-derived Level 2/ARD products and processes are investigated at the Marr five levels of understanding of an information processing system.To overcome their drawbacks,an innovative,but realistic EO optical sensory image-derived semantics-enriched ARD product-pair and process gold standard is proposed in the subsequent Part 2.展开更多
Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this paper consists of two parts.In the previous Part 1,existing EO optical sensory imagederived Level 2/Analysi...Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this paper consists of two parts.In the previous Part 1,existing EO optical sensory imagederived Level 2/Analysis Ready Data(ARD)products and processes are critically compared,to overcome their lack of harmonization/standardization/interoperability and suitability in a new notion of Space Economy 4.0.In the present Part 2,original contributions comprise,at the Marr five levels of system understanding:(1)an innovative,but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification.First,in the pursuit of third-level semantic/ontological interoperability,a novel ARD symbolic(categorical and semantic)co-product,known as Scene Classification Map(SCM),adopts an augmented Cloud versus Not-Cloud taxonomy,whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System’s Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization.Second,a novel ARD subsymbolic numerical co-product,specifically,a panchromatic or multispectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure,ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values,in a five-stage radiometric correction sequence.(2)An original ARD process requirements specification.(3)An innovative ARD processing system design(architecture),where stepwise SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence.(4)An original modular hierarchical hybrid(combined deductive and inductive)computer vision subsystem design,provided with feedback loops,where software solutions at the Marr two shallowest levels of system understanding,specifically,algorithm and implementation,are selected from the scientific literature,to benefit from their technology readiness level as proof of feasibility,required in addition to proven suitability.To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers,the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0.展开更多
基金supported by National Natural Science Foundation of China(Nos.U1813215 and 61773239)the Taishan Scholars Program of Shandong Province(No.ts201511005)。
文摘The indoor robots are expected to complete metric navigation tasks safely and efficiently in complex environments, which is the essential prerequisite for accomplishing other high-level operation tasks. 2 D occupancy grid maps are sufficient to support the robots in avoiding all obstacles in the environments during navigation. However, the maps based on normal laser scans only reflect a horizontal slice of the environment, which may cause the problem of some obstacles missing or misinterpreting their exact boundaries,thereby threatening the safety and efficiency of robot navigation. This paper presents a 2 D mapping method based on virtual laser scans to provide a more comprehensive representation of obstacles for indoor robot navigation. The resulting maps can accurately represent the top-down projected contours of all obstacles no matter where their vertical positions are. The virtual laser scans are initially generated from raw data of an RGB-D camera based on the filtering, projection, and polar-coordinate scanning. The scans are fed directly to the laser-based simultaneous localization and mapping(SLAM) algorithms to update the current map and robot position. Two auxiliary strategies are proposed to further improve the quality of maps by reducing the impact of the narrow field of view and the blind zone of the RGB-D camera on the observations. In this paper, the improved virtual laser generation method makes the extracted 2 D observations fit the laser-based SLAM algorithms, and two auxiliary strategies are novel ways to improve map quality. The generated maps can reflect the comprehensive obstacle information in indoor environments with good accuracy. The comparative experiments are carried out based on four simulation scenarios and three real-world scenarios to prove the effectiveness of our 2 D mapping method.
文摘Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species.
基金Under the auspices of the Science Data Sharing Pilot Project of Ministry of Science and Technology of China (No. 2003DEA2C010), Natural Science Fund of Henan University on Virtual City Construction Method (No. 04YBRW026)
文摘Virtual Reality provides a new approach for geographical research. In this paper, a framework of the Virtual Huanghe (Yellow) River System was first presented from the view of technology, which included five main modules——data sources, 3D simulation terrain database, 3D simulation model database, 3D simulation implementation and application system. Then the key technoiogies of constructing Virtual Huanghe River System were discussed in detail: 1) OpenGL technology, the 3D graphics developing instrument, was employed in Virtual Huanghe River System to realize the function of dynamic real-time navigation. 2) MO and OpenGL technologies were used to make the mutual response between 3D scene and 2D electronic map available, which made use of the advantages of both 3D scene and 2D electronic map, with the macroscopic view, integrality and conciseness of 2D electronic map combined with the locality, reality and visualization of 3D scene. At the same time the disadvantages of abstract and ambiguity of 2D electronic map and the direction losing of virtual navigation in 3D scene were overcome.
文摘Cities are in constant change and city managers aim to keep an updated digital model of the city for city governance. There are a lot of images uploaded daily on image sharing platforms (as “Flickr”, “Twitter”, etc.). These images feature a rough localization and no orientation information. Nevertheless, they can help to populate an active collaborative database of street images usable to maintain a city 3D model, but their localization and orientation need to be known. Based on these images, we propose the Data Gathering system for image Pose Estimation (DGPE) that helps to find the pose (position and orientation) of the camera used to shoot them with better accuracy than the sole GPS localization that may be embedded in the image header. DGPE uses both visual and semantic information, existing in a single image processed by a fully automatic chain composed of three main layers: Data retrieval and preprocessing layer, Features extraction layer, Decision Making layer. In this article, we present the whole system details and compare its detection results with a state of the art method. Finally, we show the obtained localization, and often orientation results, combining both semantic and visual information processing on 47 images. Our multilayer system succeeds in 26% of our test cases in finding a better localization and orientation of the original photo. This is achieved by using only the image content and associated metadata. The use of semantic information found on social media such as comments, hash tags, etc. has doubled the success rate to 59%. It has reduced the search area and thus made the visual search more accurate.
文摘Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this two-part paper identifies an innovative,but realistic EO optical sensory imagederived semantics-enriched Analysis Ready Data(ARD)productpair and process gold standard as linchpin for success of a new notion of Space Economy 4.0.To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers,it is regarded as necessarybut-not-sufficient“horizontal”(enabling)precondition for:(I)Transforming existing EO big raster-based data cubes at the midstream segment,typically affected by the so-called data-rich information-poor syndrome,into a new generation of semanticsenabled EO big raster-based numerical data and vector-based categorical(symbolic,semi-symbolic or subsymbolic)information cube management systems,eligible for semantic content-based image retrieval and semantics-enabled information/knowledge discovery.(II)Boosting the downstream segment in the development of an ever-increasing ensemble of“vertical”(deep and narrow,user-specific and domain-dependent)value–adding information products and services,suitable for a potentially huge worldwide market of institutional and private end-users of space technology.For the sake of readability,this paper consists of two parts.In the present Part 1,first,background notions in the remote sensing metascience domain are critically revised for harmonization across the multidisciplinary domain of cognitive science.In short,keyword“information”is disambiguated into the two complementary notions of quantitative/unequivocal information-as-thing and qualitative/equivocal/inherently ill-posed information-as-data-interpretation.Moreover,buzzword“artificial intelligence”is disambiguated into the two better-constrained notions of Artificial Narrow Intelligence as part-without-inheritance-of AGI.Second,based on a betterdefined and better-understood vocabulary of multidisciplinary terms,existing EO optical sensory image-derived Level 2/ARD products and processes are investigated at the Marr five levels of understanding of an information processing system.To overcome their drawbacks,an innovative,but realistic EO optical sensory image-derived semantics-enriched ARD product-pair and process gold standard is proposed in the subsequent Part 2.
基金ASAP 16 project call,project title:SemantiX-A cross-sensor semantic EO data cube to open and leverage essential climate variables with scientists and the public,Grant ID:878939ASAP 17 project call,project title:SIMS-Soil sealing identification and monitoring system,Grant ID:885365.
文摘Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this paper consists of two parts.In the previous Part 1,existing EO optical sensory imagederived Level 2/Analysis Ready Data(ARD)products and processes are critically compared,to overcome their lack of harmonization/standardization/interoperability and suitability in a new notion of Space Economy 4.0.In the present Part 2,original contributions comprise,at the Marr five levels of system understanding:(1)an innovative,but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification.First,in the pursuit of third-level semantic/ontological interoperability,a novel ARD symbolic(categorical and semantic)co-product,known as Scene Classification Map(SCM),adopts an augmented Cloud versus Not-Cloud taxonomy,whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System’s Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization.Second,a novel ARD subsymbolic numerical co-product,specifically,a panchromatic or multispectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure,ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values,in a five-stage radiometric correction sequence.(2)An original ARD process requirements specification.(3)An innovative ARD processing system design(architecture),where stepwise SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence.(4)An original modular hierarchical hybrid(combined deductive and inductive)computer vision subsystem design,provided with feedback loops,where software solutions at the Marr two shallowest levels of system understanding,specifically,algorithm and implementation,are selected from the scientific literature,to benefit from their technology readiness level as proof of feasibility,required in addition to proven suitability.To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers,the proposed EO optical sensory image-derived semantics-enriched ARD product-pair and process reference standard is highlighted as linchpin for success of a new notion of Space Economy 4.0.