The perihelion of long-period comets places them near the Sun so they may exhibit activity.Before 2013 LU28 reached its perihelion,we performed a continuous observation to detect possible activity.Using the Lijiang 2....The perihelion of long-period comets places them near the Sun so they may exhibit activity.Before 2013 LU28 reached its perihelion,we performed a continuous observation to detect possible activity.Using the Lijiang 2.4 m telescope with a Johnson R filter,we measured the brightness of 2013 LU28 from 2024 January 3 to April 13.The instrumental magnitudes were subsequently transformed into the Pan-STARRS r system.Due to the noticeable descending trend in the absolute magnitude,we verified the cometary activity and constrained some photometric properties of 2013 LU28.Consequently,the increased cross-sectional area had a rate of 42.8 km^(2)day^(−1),and the corresponding mass-loss rate was 2.64 kg s^(−1)with the assumption of a dust-particle size a=10 mm and the densityρ=400 kg m^(−3).We estimated the nucleus radius as 0.11■r_(n)■0.21 km for CO sublimation and 0.20■r_(n)■0.71 km for CO_(2)sublimation and the grain size of 2013 LU28 was ac;117.95μm for CO and ac■7.57μm for CO_(2).The long-term observations provided in this paper will offer significant value for investigating the mechanisms driving the activity of 2013 LU28.展开更多
基金Funding for the telescope has been provided by CAS and the People’s Government of Yunnan Provincefunded by the Civil Aerospace pre-research project D020302+2 种基金National Natural Science Foundation of China (U12150009,12150009)the CAS Light of West China Programthe science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B10
文摘The perihelion of long-period comets places them near the Sun so they may exhibit activity.Before 2013 LU28 reached its perihelion,we performed a continuous observation to detect possible activity.Using the Lijiang 2.4 m telescope with a Johnson R filter,we measured the brightness of 2013 LU28 from 2024 January 3 to April 13.The instrumental magnitudes were subsequently transformed into the Pan-STARRS r system.Due to the noticeable descending trend in the absolute magnitude,we verified the cometary activity and constrained some photometric properties of 2013 LU28.Consequently,the increased cross-sectional area had a rate of 42.8 km^(2)day^(−1),and the corresponding mass-loss rate was 2.64 kg s^(−1)with the assumption of a dust-particle size a=10 mm and the densityρ=400 kg m^(−3).We estimated the nucleus radius as 0.11■r_(n)■0.21 km for CO sublimation and 0.20■r_(n)■0.71 km for CO_(2)sublimation and the grain size of 2013 LU28 was ac;117.95μm for CO and ac■7.57μm for CO_(2).The long-term observations provided in this paper will offer significant value for investigating the mechanisms driving the activity of 2013 LU28.
文摘多发性骨髓瘤(multiple myeloma,MM)的形成是一个涉及多种生物学因素和分子机制相互作用的复杂过程,与多种信号通路、肿瘤微环境(tumor micro-environment,TME)之间的相互作用密切相关。微小RNA(microRNA,miRNA)是一类高度稳定的小型非编码RNA,miR⁃28⁃3p作为其重要一员,通过诱导磷酸酶和张力蛋白同源基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)的表达及其他重要细胞因子的产生,在调控细胞增殖、凋亡、侵袭及转移等重要环节发挥其功能。本文结合国内外研究对miR⁃28⁃3p的作用机制进行综述,有助于阐明miR⁃28⁃3p在MM的发生、发展过程中发挥的重要作用及其分子机制,为其在MM的基因诊断、治疗靶标开发方面提供了新的理论依据和潜在靶点。