Al Ferron timed complex colorimetric method (AFM) and 27 Al NMR spectroscopy method(ANM) were discussed. For the former, the different colorimetric reagent preparation methods' results indicate that the...Al Ferron timed complex colorimetric method (AFM) and 27 Al NMR spectroscopy method(ANM) were discussed. For the former, the different colorimetric reagent preparation methods' results indicate that there are some differences beteween them, and the combined method can be used as a simplified procedure. For the latter, the small tube method is more accurate. Eventually, the Al 13 (ANM) was compared to the Al b (AFM).展开更多
Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and te...Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.展开更多
In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa...In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.展开更多
文摘Al Ferron timed complex colorimetric method (AFM) and 27 Al NMR spectroscopy method(ANM) were discussed. For the former, the different colorimetric reagent preparation methods' results indicate that there are some differences beteween them, and the combined method can be used as a simplified procedure. For the latter, the small tube method is more accurate. Eventually, the Al 13 (ANM) was compared to the Al b (AFM).
文摘Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.
文摘In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.