The Greenberger–Horne–Zeilinger(GHZ)paradox shows that it is possible to create a multipartite state involving three or more particles in which the measurement outcomes of the particles are correlated in a way that ...The Greenberger–Horne–Zeilinger(GHZ)paradox shows that it is possible to create a multipartite state involving three or more particles in which the measurement outcomes of the particles are correlated in a way that cannot be explained by classical physics.We extend it to witness quantum networks.We first extend the GHZ paradox to simultaneously verify the GHZ state and Einstein–Podolsky–Rosen states on triangle networks.We then extend the GHZ paradox to witness the entanglement of chain networks consisting of multiple GHZ states.All the present results are robust against the noise.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62172341,12204386)Sichuan Natural Science Foundation(Nos.2024NSFSC1365,2024NSFSC1375 and 2023NSFSC0447)。
文摘The Greenberger–Horne–Zeilinger(GHZ)paradox shows that it is possible to create a multipartite state involving three or more particles in which the measurement outcomes of the particles are correlated in a way that cannot be explained by classical physics.We extend it to witness quantum networks.We first extend the GHZ paradox to simultaneously verify the GHZ state and Einstein–Podolsky–Rosen states on triangle networks.We then extend the GHZ paradox to witness the entanglement of chain networks consisting of multiple GHZ states.All the present results are robust against the noise.