A magnetic-based geophysical study was performed across the southern part of Cameroon to investigate the boundary between the Archean Congo craton and the Pan-African metamorphic belt. Magnetic gradient techniques inc...A magnetic-based geophysical study was performed across the southern part of Cameroon to investigate the boundary between the Archean Congo craton and the Pan-African metamorphic belt. Magnetic gradient techniques including Euler deconvolution and Tilt derivative have been applied to an aeromagnetic data profile to determine the depth of sources and their lateral extension. 2.5D magnetic modeling shows that the prominent magnetic positive anomalies observed on total magnetic map of south Cameroon are produced by deep and strongly magnetic bodies under the Pan-African formations mainly an important dyke formation structure with a high susceptibility of 0.041 (SI units), at an average depth of 4148 m and with a lateral extension of about 10 km. These bodies are interpreted to have emplaced at high crustal levels in a continental collision zone and were subsequently metamorphosed at granulite grade conditions, during the Pan-African orogeny about 620 Ma ago.展开更多
The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir upli...The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir uplift.Seismic imaging revealed that the upper slab was scraped and that the lower slab had subducted to a depth of>150 km.These features constitute the tectonic complexity of the Pamirs,as well as the thermal subduction mechanism involved,which remains poorly understood.Hence,in this study,high-resolution three-dimensional(3D)kinematic modeling is applied to investigate the thermal structure and geometry of the subducting slab beneath the Pamirs.The modeled slab configuration reveals distinct along-strike variations,with a steeply dipping slab beneath the southern Pamirs,a more gently inclined slab beneath the northern Pamirs,and apparent upper slab termination at shallow depths beneath the Pamirs.The thermal field reveals a cold slab core after delamination,with temperatures ranging from 400℃to 800℃,enveloped by a hotter mantle reaching~1400℃.The occurrence of intermediate-depth earthquakes aligns primarily with colder slab regions,particularly near the slab tear-off below the southwestern Pamirs,indicating a strong correlation between slab temperature and seismicity.In contrast,the northern Pamirs exhibit reduced seismicity at depth,which is likely associated with thermal weakening and delamination.The central Pamirs show a significant thermal anomaly caused by a concave slab,where the coldest crust does not descend deeply,further suggesting crustal detachment or mechanical failure.The lateral asymmetry in slab temperature possibly explains the mechanism of lateral tearing and differential slab-mantle coupling.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d...Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.展开更多
随着摩尔定律指引下的晶体管微缩逼近物理极限,先进封装技术通过系统微型化与异构集成,成为突破芯片性能瓶颈的关键路径。作为先进封装的核心分支,2.5D封装通过硅/玻璃中介层实现高密度互连与多芯片异构集成,兼具高带宽、低延迟和小型...随着摩尔定律指引下的晶体管微缩逼近物理极限,先进封装技术通过系统微型化与异构集成,成为突破芯片性能瓶颈的关键路径。作为先进封装的核心分支,2.5D封装通过硅/玻璃中介层实现高密度互连与多芯片异构集成,兼具高带宽、低延迟和小型化优势,广泛应用于人工智能、高性能计算及移动电子领域。系统阐述了2.5D封装的核心结构(如Co Wo S、EMIB和I-Cube)及其技术特征,重点剖析了Chiplet模块化设计、硅通孔(TSV)工艺优化、微凸点可靠性提升、铜-铜直接键合界面工程以及再布线层多物理场协同设计等关键技术的最新进展。未来研究需聚焦低成本玻璃基板、原子层沉积技术抑制界面氧化以及多物理场协同设计等方面,以突破良率和散热瓶颈,推动2.5D封装在后摩尔时代高算力场景中的广泛应用。展开更多
文摘A magnetic-based geophysical study was performed across the southern part of Cameroon to investigate the boundary between the Archean Congo craton and the Pan-African metamorphic belt. Magnetic gradient techniques including Euler deconvolution and Tilt derivative have been applied to an aeromagnetic data profile to determine the depth of sources and their lateral extension. 2.5D magnetic modeling shows that the prominent magnetic positive anomalies observed on total magnetic map of south Cameroon are produced by deep and strongly magnetic bodies under the Pan-African formations mainly an important dyke formation structure with a high susceptibility of 0.041 (SI units), at an average depth of 4148 m and with a lateral extension of about 10 km. These bodies are interpreted to have emplaced at high crustal levels in a continental collision zone and were subsequently metamorphosed at granulite grade conditions, during the Pan-African orogeny about 620 Ma ago.
基金the Chinese Academy of Sciences Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0708)supported by a MEXT(Ministry of Education,Culture,Sports,Science and Technology)KAKENHI(Grants-in-Aid for Scientific Research)grant(Grant No.21H05203)Kobe University Strategic International Collaborative Research Grant(Type B Fostering Joint Research).
文摘The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir uplift.Seismic imaging revealed that the upper slab was scraped and that the lower slab had subducted to a depth of>150 km.These features constitute the tectonic complexity of the Pamirs,as well as the thermal subduction mechanism involved,which remains poorly understood.Hence,in this study,high-resolution three-dimensional(3D)kinematic modeling is applied to investigate the thermal structure and geometry of the subducting slab beneath the Pamirs.The modeled slab configuration reveals distinct along-strike variations,with a steeply dipping slab beneath the southern Pamirs,a more gently inclined slab beneath the northern Pamirs,and apparent upper slab termination at shallow depths beneath the Pamirs.The thermal field reveals a cold slab core after delamination,with temperatures ranging from 400℃to 800℃,enveloped by a hotter mantle reaching~1400℃.The occurrence of intermediate-depth earthquakes aligns primarily with colder slab regions,particularly near the slab tear-off below the southwestern Pamirs,indicating a strong correlation between slab temperature and seismicity.In contrast,the northern Pamirs exhibit reduced seismicity at depth,which is likely associated with thermal weakening and delamination.The central Pamirs show a significant thermal anomaly caused by a concave slab,where the coldest crust does not descend deeply,further suggesting crustal detachment or mechanical failure.The lateral asymmetry in slab temperature possibly explains the mechanism of lateral tearing and differential slab-mantle coupling.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the National Natural Science Foundation of China(No.41504083)National Basic Research Program of China(973Program)(No.2013CB429805)
文摘Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.
文摘随着摩尔定律指引下的晶体管微缩逼近物理极限,先进封装技术通过系统微型化与异构集成,成为突破芯片性能瓶颈的关键路径。作为先进封装的核心分支,2.5D封装通过硅/玻璃中介层实现高密度互连与多芯片异构集成,兼具高带宽、低延迟和小型化优势,广泛应用于人工智能、高性能计算及移动电子领域。系统阐述了2.5D封装的核心结构(如Co Wo S、EMIB和I-Cube)及其技术特征,重点剖析了Chiplet模块化设计、硅通孔(TSV)工艺优化、微凸点可靠性提升、铜-铜直接键合界面工程以及再布线层多物理场协同设计等关键技术的最新进展。未来研究需聚焦低成本玻璃基板、原子层沉积技术抑制界面氧化以及多物理场协同设计等方面,以突破良率和散热瓶颈,推动2.5D封装在后摩尔时代高算力场景中的广泛应用。