A new AB^2 operation in Galois Field GF(24)is presented and its systolic realization based on multiple-valued logic(MVL)is proposed.The systolic structure of the operation employs multiple-valued current mode(MVCM)by ...A new AB^2 operation in Galois Field GF(24)is presented and its systolic realization based on multiple-valued logic(MVL)is proposed.The systolic structure of the operation employs multiple-valued current mode(MVCM)by using dynamic source-coupled logic(SCL)to reduce the transistor and wire counts,and the initial delay.The performance is evaluated by HSPICE simulation with 0.18.μm CMOS technology.A comparison is conducted between our proposed implementation and those reported in the literature.The transistor counts,the wire counts and the initial delay in our MVL design show savings of about 23%,45%,and 72%,in comparison with the corresponding binary CMOS implementation.The systolic architecture proposed is simple,regular,and modular,well suited for very large scale integration(VLSI)implementation.The combination of MVCM circuits and relevant algorithms based on MVL seems to be a potential solution for high performance arithmetic operations in GF(2^k).展开更多
For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compare...For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compared with the type-1 TSK fuzzy logic system method,interval type-2 fuzzy sets could simultaneously model both intra-personal uncertainty and inter-personal uncertainty based on the training of the existing error back propagation(BP)algorithm,and the IGWO algorithm was used for training the model premise and consequent parameters to further improve the predictive performance of the model.By improving the gray wolf optimization algorithm,the early convergence judgment mechanism,nonlinear cosine adjustment strategy,and Levy flight strategy were introduced to improve the convergence speed of the algorithm and avoid the problem of falling into local optimum.The interval type-2 TSK FLS method based on the IGWO algorithm was applied to the real-world photovoltaic power time series forecasting instance.Under the same conditions,it was also compared with different IT2 TSK FLS methods,such as type I TSK FLS method,BP algorithm,genetic algorithm,differential evolution,particle swarm optimization,biogeography optimization,gray wolf optimization,etc.Experimental results showed that the proposed method based on IGWO algorithm outperformed other methods in performance,showing its effectiveness and application potential.展开更多
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T...As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.展开更多
From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise c...From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis.展开更多
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ...Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.展开更多
This paper proposes an algorithm applied in se mantic P2P network based on the description logics with the purpose for realizing the concepts distribution of resources, which makes the resources semantic locating easy...This paper proposes an algorithm applied in se mantic P2P network based on the description logics with the purpose for realizing the concepts distribution of resources, which makes the resources semantic locating easy. With the idea of the consistent hashing in the Chord, our algorithm stores the addresses and resources with the values of the same type to select instance. In addition, each peer has its own ontology, which will be completed by the knowledge distributed over the network during the exchange of CHGs (classification hierarchy graphs). The hierarchy classification of concepts allows to find matching resource by querying to the upper level concept because the all concepts described in the CHG have the same root.展开更多
This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time ...This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time interval type 2 fuzzy logic control system applications. The results are also compared against NT (Nie-Tan) method that is one of the fastest and simplest defuzzification methods. Because the DC (direct current) servo-motor is one of the most used motors in different industrial applications and the model of the motor is nonlinear, this motor was selected for validating the implementation in real time hardware. This DC motor is a perfect option for studying the real time performance of KM algorithms in order to show up its limits and possibilities for real-time control system applications. These methodologies are implemented in National Instruments LabVIEW FPGA (field programmable gate array) module hardware which is one of the most used platforms in the industry. The results show that the E-KM (enhanced KM) algorithm and the NT method present good results for implementing real-time control applications in real time hardware. Although fuzzy logic type 2 is a good option for working with nonlinear and noise from the sensors, the defuzzification method has to react in a short period of time in order to allow good control response. Hence, a complete study of defuzzification is needed for improving the real time implementations of fuzzy type 2.展开更多
ased on the 4-valued logic function in orthogonal area, a new series──the orthogonal 4-valued function series──is proposed. Having good performances, the new series is superior to Walsh function and block pulse fu...ased on the 4-valued logic function in orthogonal area, a new series──the orthogonal 4-valued function series──is proposed. Having good performances, the new series is superior to Walsh function and block pulse function in the computation of truncation errors.展开更多
Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working m...Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working mechanism,called a logic transistor.To figure out the application prospects of logic transistors,exploring the temperature dependence of logic characteristics is important.In this work,we explore the temperature effect on the electrical characteristic of a logic transistor,finding that changes in temperature cause transformation in the calculation:logical output converts from‘AND’at 10 K to‘OR’at 250 K.The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature.In the experiment,the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K.The change of threshold voltage with temperature is consistent with the energy band,which confirms the theoretical analysis.Therefore,as a promising material for future integrated circuits,the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.展开更多
Navigation of autonomous mobile robots in dynamic and unknown environments needs to take into account different kinds of uncertainties. Type-1 fuzzy logic research has been largely used in the control of mobile robots...Navigation of autonomous mobile robots in dynamic and unknown environments needs to take into account different kinds of uncertainties. Type-1 fuzzy logic research has been largely used in the control of mobile robots. However, type-1 fuzzy control presents limitations in handling those uncertainties as it uses precise fuzzy sets. Indeed type-1 fuzzy sets cannot deal with linguistic and numerical uncertainties associated with either the mechanical aspect of robots, or with dynamic changing environment or with knowledge used in the phase of conception of a fuzzy system. Recently many researchers have applied type-2 fuzzy logic to improve performance. As control using type-2 fuzzy sets represents a new generation of fuzzy controllers in mobile robotic issue, it is interesting to present the performances that can offer type-2 fuzzy sets by regards to type-1 fuzzy sets. The paper presented deep and new comparisons between the two sides of fuzzy logic and demonstrated the great interest in controlling mobile robot using type-2 fuzzy logic. We deal with the design of new controllers for mobile robots using type-2 fuzzy logic in the navigation process in unknown and dynamic environments. The dynamicity of the environment is depicted by the presence of other dynamic robots. The performances of the proposed controllers are represented by both simulations and experimental results, and discussed over graphical paths and numerical analysis.展开更多
In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel c...In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel classification approaches to this problem: one based on the use of the powerful type-2 fuzzy logic systems (type-2 FLS) and the other on the use of the discriminative sensitivity-based linear learning method (SBLLM). The use of prosodic features has been used in a plethora of practical applications, including speech-related applications, such as speaker and word recognition, emotion and accent identification, topic and sentence segmentation, and text-to-speech applications. In this paper, we continue to specifically focus on the Arabic language, as other languages have received a lot of attention in this regard. Moreover, we aim to improve the performance of our previously-used techniques, of which the support vector machine (SVM) method was the best performing, by applying the two above-mentioned powerful classification approaches. The recorded continuous speech is first segmented into sentences using both energy and time duration parameters. The prosodic features are then extracted from each sentence and fed into each of the two proposed classifiers so as to classify each sentence as a Question or a Non-Question sentence. Our extensive simulation work, based on a moderately-sized database, showed the two proposed classifiers outperform SVM in all of the experiments carried out, with the type-2 FLS classifier consistently exhibiting the best performance, because of its ability to handle all forms of uncertainties.展开更多
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ...The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS.展开更多
基金National Natural Science Foundation of China(61801027)。
文摘A new AB^2 operation in Galois Field GF(24)is presented and its systolic realization based on multiple-valued logic(MVL)is proposed.The systolic structure of the operation employs multiple-valued current mode(MVCM)by using dynamic source-coupled logic(SCL)to reduce the transistor and wire counts,and the initial delay.The performance is evaluated by HSPICE simulation with 0.18.μm CMOS technology.A comparison is conducted between our proposed implementation and those reported in the literature.The transistor counts,the wire counts and the initial delay in our MVL design show savings of about 23%,45%,and 72%,in comparison with the corresponding binary CMOS implementation.The systolic architecture proposed is simple,regular,and modular,well suited for very large scale integration(VLSI)implementation.The combination of MVCM circuits and relevant algorithms based on MVL seems to be a potential solution for high performance arithmetic operations in GF(2^k).
基金supported by National Natural Science Foundation of China(No.12172157)Key Project of Natural Science Foundation of Gansu Province(No.25JRRA150)Key Research and Development Planning Project of Gansu Province(No.23YFWA0007).
文摘For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compared with the type-1 TSK fuzzy logic system method,interval type-2 fuzzy sets could simultaneously model both intra-personal uncertainty and inter-personal uncertainty based on the training of the existing error back propagation(BP)algorithm,and the IGWO algorithm was used for training the model premise and consequent parameters to further improve the predictive performance of the model.By improving the gray wolf optimization algorithm,the early convergence judgment mechanism,nonlinear cosine adjustment strategy,and Levy flight strategy were introduced to improve the convergence speed of the algorithm and avoid the problem of falling into local optimum.The interval type-2 TSK FLS method based on the IGWO algorithm was applied to the real-world photovoltaic power time series forecasting instance.Under the same conditions,it was also compared with different IT2 TSK FLS methods,such as type I TSK FLS method,BP algorithm,genetic algorithm,differential evolution,particle swarm optimization,biogeography optimization,gray wolf optimization,etc.Experimental results showed that the proposed method based on IGWO algorithm outperformed other methods in performance,showing its effectiveness and application potential.
文摘As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.
文摘From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis.
文摘Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘This paper proposes an algorithm applied in se mantic P2P network based on the description logics with the purpose for realizing the concepts distribution of resources, which makes the resources semantic locating easy. With the idea of the consistent hashing in the Chord, our algorithm stores the addresses and resources with the values of the same type to select instance. In addition, each peer has its own ontology, which will be completed by the knowledge distributed over the network during the exchange of CHGs (classification hierarchy graphs). The hierarchy classification of concepts allows to find matching resource by querying to the upper level concept because the all concepts described in the CHG have the same root.
文摘This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time interval type 2 fuzzy logic control system applications. The results are also compared against NT (Nie-Tan) method that is one of the fastest and simplest defuzzification methods. Because the DC (direct current) servo-motor is one of the most used motors in different industrial applications and the model of the motor is nonlinear, this motor was selected for validating the implementation in real time hardware. This DC motor is a perfect option for studying the real time performance of KM algorithms in order to show up its limits and possibilities for real-time control system applications. These methodologies are implemented in National Instruments LabVIEW FPGA (field programmable gate array) module hardware which is one of the most used platforms in the industry. The results show that the E-KM (enhanced KM) algorithm and the NT method present good results for implementing real-time control applications in real time hardware. Although fuzzy logic type 2 is a good option for working with nonlinear and noise from the sensors, the defuzzification method has to react in a short period of time in order to allow good control response. Hence, a complete study of defuzzification is needed for improving the real time implementations of fuzzy type 2.
文摘ased on the 4-valued logic function in orthogonal area, a new series──the orthogonal 4-valued function series──is proposed. Having good performances, the new series is superior to Walsh function and block pulse function in the computation of truncation errors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61925402,61851402,and 61734003)Science and Technology Commission of Shanghai Municipality,China(Grant No.19JC1416600)+1 种基金National Key Research and Development Program of China(Grant No.2017YFB0405600)Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program,China(Grant No.18SG01).
文摘Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working mechanism,called a logic transistor.To figure out the application prospects of logic transistors,exploring the temperature dependence of logic characteristics is important.In this work,we explore the temperature effect on the electrical characteristic of a logic transistor,finding that changes in temperature cause transformation in the calculation:logical output converts from‘AND’at 10 K to‘OR’at 250 K.The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature.In the experiment,the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K.The change of threshold voltage with temperature is consistent with the energy band,which confirms the theoretical analysis.Therefore,as a promising material for future integrated circuits,the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.
文摘Navigation of autonomous mobile robots in dynamic and unknown environments needs to take into account different kinds of uncertainties. Type-1 fuzzy logic research has been largely used in the control of mobile robots. However, type-1 fuzzy control presents limitations in handling those uncertainties as it uses precise fuzzy sets. Indeed type-1 fuzzy sets cannot deal with linguistic and numerical uncertainties associated with either the mechanical aspect of robots, or with dynamic changing environment or with knowledge used in the phase of conception of a fuzzy system. Recently many researchers have applied type-2 fuzzy logic to improve performance. As control using type-2 fuzzy sets represents a new generation of fuzzy controllers in mobile robotic issue, it is interesting to present the performances that can offer type-2 fuzzy sets by regards to type-1 fuzzy sets. The paper presented deep and new comparisons between the two sides of fuzzy logic and demonstrated the great interest in controlling mobile robot using type-2 fuzzy logic. We deal with the design of new controllers for mobile robots using type-2 fuzzy logic in the navigation process in unknown and dynamic environments. The dynamicity of the environment is depicted by the presence of other dynamic robots. The performances of the proposed controllers are represented by both simulations and experimental results, and discussed over graphical paths and numerical analysis.
文摘In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel classification approaches to this problem: one based on the use of the powerful type-2 fuzzy logic systems (type-2 FLS) and the other on the use of the discriminative sensitivity-based linear learning method (SBLLM). The use of prosodic features has been used in a plethora of practical applications, including speech-related applications, such as speaker and word recognition, emotion and accent identification, topic and sentence segmentation, and text-to-speech applications. In this paper, we continue to specifically focus on the Arabic language, as other languages have received a lot of attention in this regard. Moreover, we aim to improve the performance of our previously-used techniques, of which the support vector machine (SVM) method was the best performing, by applying the two above-mentioned powerful classification approaches. The recorded continuous speech is first segmented into sentences using both energy and time duration parameters. The prosodic features are then extracted from each sentence and fed into each of the two proposed classifiers so as to classify each sentence as a Question or a Non-Question sentence. Our extensive simulation work, based on a moderately-sized database, showed the two proposed classifiers outperform SVM in all of the experiments carried out, with the type-2 FLS classifier consistently exhibiting the best performance, because of its ability to handle all forms of uncertainties.
文摘The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS.