In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilin...In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.展开更多
In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the...In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions.展开更多
Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre...This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlev...A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlevéexpansion method.Subsequently,the residue symmetry is localized to a Lie point symmetry of a prolonged system,from which the finite transformation group is derived.Secondly,the integrability of the 2DmKdV system is examined under the sense of consistent tanh expansion solvability.Simultaneously,explicit soliton-cnoidal wave solutions are provided.Finally,abundant patterns of soliton molecules are presented by imposing the velocity resonance condition on the multiple-soliton solution.展开更多
In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’...In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’s function of its Lax representation.Based on solving the ■ equation and choosing the proper spectral transformation,the solution of the DJKM equation is constructed.Furthermore,the more general solution of the DJKM equation can be also obtained by ensuring the evolution of the time spectral data.展开更多
In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By usin...In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
The(2 + 1)-dimensional generalized fifth-order Kd V(2GKd V) equation is revisited via combined physical and mathematical methods. By using the Hirota perturbation expansion technique and via setting the nonzero backgr...The(2 + 1)-dimensional generalized fifth-order Kd V(2GKd V) equation is revisited via combined physical and mathematical methods. By using the Hirota perturbation expansion technique and via setting the nonzero background wave on the multiple soliton solution of the 2GKd V equation, breather waves are constructed, for which some transformed wave conditions are considered that yield abundant novel nonlinear waves including X/Y-Shaped(XS/YS),asymmetric M-Shaped(MS), W-Shaped(WS), Space-Curved(SC) and Oscillation M-Shaped(OMS) solitons. Furthermore, distinct nonlinear wave molecules and interactional structures involving the asymmetric MS, WS, XS/YS, SC solitons, and breathers, lumps are constructed after considering the corresponding existence conditions. The dynamical properties of the nonlinear molecular waves and interactional structures are revealed via analyzing the trajectory equations along with the change of the phase shifts.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quin...We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrdinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.展开更多
We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads ...We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryf...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.展开更多
We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus ...We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus knots T p,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C(-2, 2, ···,(-1)r2) by the recursive form and discuss the distribution of their zeros.展开更多
BACKGROUND: Portopulmonary hypertension (PPH) is difficult to recognize in the early and middle stages because it is frequently asymptomatic. As right ventricular function is impaired in patients with moderate and sev...BACKGROUND: Portopulmonary hypertension (PPH) is difficult to recognize in the early and middle stages because it is frequently asymptomatic. As right ventricular function is impaired in patients with moderate and severe PPH, any dramatic hemodynamic changes in liver transplantation or other procedures may result in death from pulmonary and cardiac events. In this study, we investigated the prevalence of PPH in patients with portal hypertension (PHT) mainly caused by hepatitis B virus, and evaluated the effect of 2-dimensional Doppler echocardiography (2D-ECHO) in screening for PPH. METHODS: One hundred and five PHT patients received transthoracic 2D-ECHO preoperatively, systolic pulmonary arterial pressure (SPAP, normal range <30 mmHg) and pulmonary acceleration time (PAT, normal range >= 120 msec) were measured to screen for PPH (positive result: SPAP >= 30 mmHg and/or PAT <100 msec). Subsequently, pulmonary hemodynamic parameters were measured by right heart catheterization (RHC) for definitive diagnosis of PPH. The results of the two methods were compared to assess the screening effect of 2D-ECHO. RESULTS: The prevalence of PPH in this study was 3.8% (4/105). About 90% (95/105) of patients had a detectable tricuspid regurgitation by 2D-ECHO and the mean SPAP was 27.7 +/- 5.9 mmHg. Twenty-two of these 95 patients had an SPAP >30 mmHg. The mean PAT of all patients was 140 23 msec and 5 were <100 msec. Twenty-two patients were screened out by 2D-ECHO and 4 were diagnosed by RHC. A positive significant correlation (r=0.55, P<0.01) was found between SPAP measured by 2D-ECHO and mean pulmonary artery pressure (MPAP) measured by RHC, and a weak but significant negative correlation (r=-0.27, P=0.005) existed between PAT and pulmonary vascular resistance (PVR). The sensitivity, specificity, agreement rate, positive predictive value and negative predictive value of the screening test were 100%, 82%, 83%, 18% and 100%, respectively. CONCLUSIONS: The prevalence of PPH in this study is lower than in Western countries. As a screening test, 2D-ECHO has very high sensitivity and negative predictive value. A negative test result can directly be used to exclude PPH, while a positive result should be confirmed by RHC.展开更多
Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.u...Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.展开更多
In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational lo...In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solu...New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.展开更多
基金supported by the National Natural Science Foundation of China,Grant No.12375006。
文摘In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.
基金supported by the National Natural Science Foundation of China(12371255,11975306)the Xuzhou Basic Research Program Project(KC23048)+1 种基金the Six Talent Peaks Project in Jiangsu Province(JY-059)the 333 Project in Jiangsu Province and the Fundamental Research Funds for the Central Universities of CUMT(2024ZDPYJQ1003).
文摘In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions.
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
基金supported by the BK21 FOUR funded by the Ministry of Education of Korea and National Research Foundation of Korea,a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ICAN(ICT Challenge and Advanced Network of HRD)grant funded by the Korea government(Ministry of Science and ICT)(RS-2024-00438411).
文摘This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the National Natural Science Foundation of China(No.12375006).
文摘A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlevéexpansion method.Subsequently,the residue symmetry is localized to a Lie point symmetry of a prolonged system,from which the finite transformation group is derived.Secondly,the integrability of the 2DmKdV system is examined under the sense of consistent tanh expansion solvability.Simultaneously,explicit soliton-cnoidal wave solutions are provided.Finally,abundant patterns of soliton molecules are presented by imposing the velocity resonance condition on the multiple-soliton solution.
基金supported by National Natural Science Foundation of China under Grant Nos.12175111,11975131K C Wong Magna Fund in Ningbo University。
文摘In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’s function of its Lax representation.Based on solving the ■ equation and choosing the proper spectral transformation,the solution of the DJKM equation is constructed.Furthermore,the more general solution of the DJKM equation can be also obtained by ensuring the evolution of the time spectral data.
基金supported by the National Natural Science Foundation of China (Grant No. 12 361 052)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2022ZD05)+2 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414)the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBTD007)the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), and the Ministry of Education (Grant Nos. 2023KFZR01, 2023KFZR02)
文摘In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
基金provided by the National Natural Science Foundation of China (Grant No. 12271324)the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2024JC-YBQN-0069)+2 种基金the China Postdoctoral Science Foundation (Grant No. 2024M751921)the 2023 Shaanxi Province Postdoctoral Research Project (Grant No.2023BSHEDZZ186)the Fundamental Research Funds for the Central Universities (Grant No. 1301032598)。
文摘The(2 + 1)-dimensional generalized fifth-order Kd V(2GKd V) equation is revisited via combined physical and mathematical methods. By using the Hirota perturbation expansion technique and via setting the nonzero background wave on the multiple soliton solution of the 2GKd V equation, breather waves are constructed, for which some transformed wave conditions are considered that yield abundant novel nonlinear waves including X/Y-Shaped(XS/YS),asymmetric M-Shaped(MS), W-Shaped(WS), Space-Curved(SC) and Oscillation M-Shaped(OMS) solitons. Furthermore, distinct nonlinear wave molecules and interactional structures involving the asymmetric MS, WS, XS/YS, SC solitons, and breathers, lumps are constructed after considering the corresponding existence conditions. The dynamical properties of the nonlinear molecular waves and interactional structures are revealed via analyzing the trajectory equations along with the change of the phase shifts.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金Supported by the Applied Nonlinear Science and Technology from the Most Important Among all the Top Priority Disciplines of Zhejiang Province
文摘We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrdinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.
文摘We study the localized coherent structures ofa generally nonintegrable (2+ 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.
基金The project supported by National Natural Science Foundation of China
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.
基金Supported by the National Science Foundation of China(11471151) Supported by Program for Liaoning Excellent Talents in University(LR2011031)
Acknowledgment The authors would like to thank the referees for kind suggestions and many useful comments
文摘We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus knots T p,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C(-2, 2, ···,(-1)r2) by the recursive form and discuss the distribution of their zeros.
基金supported by a grant from the Shanghai Municipal Health Bureau(No.054041)
文摘BACKGROUND: Portopulmonary hypertension (PPH) is difficult to recognize in the early and middle stages because it is frequently asymptomatic. As right ventricular function is impaired in patients with moderate and severe PPH, any dramatic hemodynamic changes in liver transplantation or other procedures may result in death from pulmonary and cardiac events. In this study, we investigated the prevalence of PPH in patients with portal hypertension (PHT) mainly caused by hepatitis B virus, and evaluated the effect of 2-dimensional Doppler echocardiography (2D-ECHO) in screening for PPH. METHODS: One hundred and five PHT patients received transthoracic 2D-ECHO preoperatively, systolic pulmonary arterial pressure (SPAP, normal range <30 mmHg) and pulmonary acceleration time (PAT, normal range >= 120 msec) were measured to screen for PPH (positive result: SPAP >= 30 mmHg and/or PAT <100 msec). Subsequently, pulmonary hemodynamic parameters were measured by right heart catheterization (RHC) for definitive diagnosis of PPH. The results of the two methods were compared to assess the screening effect of 2D-ECHO. RESULTS: The prevalence of PPH in this study was 3.8% (4/105). About 90% (95/105) of patients had a detectable tricuspid regurgitation by 2D-ECHO and the mean SPAP was 27.7 +/- 5.9 mmHg. Twenty-two of these 95 patients had an SPAP >30 mmHg. The mean PAT of all patients was 140 23 msec and 5 were <100 msec. Twenty-two patients were screened out by 2D-ECHO and 4 were diagnosed by RHC. A positive significant correlation (r=0.55, P<0.01) was found between SPAP measured by 2D-ECHO and mean pulmonary artery pressure (MPAP) measured by RHC, and a weak but significant negative correlation (r=-0.27, P=0.005) existed between PAT and pulmonary vascular resistance (PVR). The sensitivity, specificity, agreement rate, positive predictive value and negative predictive value of the screening test were 100%, 82%, 83%, 18% and 100%, respectively. CONCLUSIONS: The prevalence of PPH in this study is lower than in Western countries. As a screening test, 2D-ECHO has very high sensitivity and negative predictive value. A negative test result can directly be used to exclude PPH, while a positive result should be confirmed by RHC.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of China under Grant Nos.11675054 and 11435005+1 种基金Outstanding Doctoral Dissertation Cultivation Plan of Action under Grant No.YB2016039Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213
文摘In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
文摘New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.