We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus ...We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus knots T p,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C(-2, 2, ···,(-1)r2) by the recursive form and discuss the distribution of their zeros.展开更多
基金Supported by the National Science Foundation of China(11471151) Supported by Program for Liaoning Excellent Talents in University(LR2011031)
Acknowledgment The authors would like to thank the referees for kind suggestions and many useful comments
文摘We study zeros of the Jones polynomial and their distributions for torus knots and 2-bridge knots. We prove that e(2m+1)πi/2and e(2m+1)πi/4(m is a positive integer)can not be the zeros of Jones polynomial for torus knots T p,q by the knowledge of the trigonometric function. We elicit the normal form of Jones polynomials of the 2-bridge knot C(-2, 2, ···,(-1)r2) by the recursive form and discuss the distribution of their zeros.