Electron-electron interactions(EEIs),quantum interference,and the effects of disorder on transport properties are essential topics in condensed matter physics.A series of our characterization work demonstrates that th...Electron-electron interactions(EEIs),quantum interference,and the effects of disorder on transport properties are essential topics in condensed matter physics.A series of our characterization work demonstrates that the morphology of Bi_(2)Te_(3)/MnTe bilayer film mainly depends on the magnetic substrate's growth mode and thickness.We propose that the temperature-dependent quantum interference of the electron wave function caused by disorder drives the transition from weak antilocalization(WAL) to weak localization(WL).Due to spin regulation,WL under low fields originates from the ferromagnetism in MnTe.The quantum interference effect(QIE) model analysis gives the degree of impurity scattering of the electron wave function.The electron wave is scattered by impurities,which causes the Berry phase to change from π to 0,producing a complete WL behavior.The stacked structure provides tunable degrees of freedom,allowing for independent optimization of topological properties and magnetic order through preferential growth orientation of topological insulator(TI) and magnetic layers,respectively.展开更多
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl...Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).展开更多
In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is ...In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement.展开更多
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has been developed as a promising and attractive strategy to close the anthropogenic carbon cycle.Among various reduction products,multi-carbon(C_(2+))oxygenate and h...Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has been developed as a promising and attractive strategy to close the anthropogenic carbon cycle.Among various reduction products,multi-carbon(C_(2+))oxygenate and hydrocarbon compounds are desirable value-added fuels or chemicals.Extensive researches have revealed the crucial role of local CO_(2)and H_(2)O concentrations(or the adsorption of ^(*)CO and ^(*)H)close to the electrode/catalyst surface in manipulating multi-carbon generation pathways.In this mini reviews,we mainly summarized the recent progress of this field over the past five years.The modulating strategies for the hydrogen and carbon species ratio can be divided into three categories,i.e.,catalyst morphology,electrolyte composition and mass transfer.The effectiveness of the aforementioned strategies in promoting multi-carbon product selectivity was discussed in detail from the perspectives of tuning the local CO_(2)and H_(2)O concentrations and the subsequent thermodynamic-and kinetic-controlled ^(*)CO and ^(*)H ratios.Finally,the critical challenges remaining in balancing the ratio of CO_(2)and H_(2)O as well as potential upgrading directions for future research are addressed.展开更多
In this paper,we consider the initial boundary value problem for the 2-D hyperbolic viscous Cahn-Hilliard equation.Firstly,we prove the existence and uniqueness of the local solution by the Galerkin method and contrac...In this paper,we consider the initial boundary value problem for the 2-D hyperbolic viscous Cahn-Hilliard equation.Firstly,we prove the existence and uniqueness of the local solution by the Galerkin method and contraction mapping principle.Then,using the potential well theory,we study the global well-posedness of the solution with initial data at different levels of initial energy,i.e.,subcritical initial energy,critical initial energy and arbitrary positive initial energy.For subcritical initial energy,we prove the global existence,asymptotic behavior and finite time blowup of the solution.Moreover,we extend these results to the critical initial energy using the scaling technique.For arbitrary positive initial energy,including the sup-critical initial energy,we obtain the sufficient conditions for finite time blow-up of the solution.As a further study for estimating the blowup time,we give a unified expression of the lower bound of blowup time for all three initial energy levels and estimate the upper bound of blowup time for subcritical and critical initial energy.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)produces valuable chemicals by consuming gaseous CO_(2)as well as protons from the electrolyte.Protons,produced by water dissociation in alkaline electrolyte,...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)produces valuable chemicals by consuming gaseous CO_(2)as well as protons from the electrolyte.Protons,produced by water dissociation in alkaline electrolyte,are critical for the reaction kinetics which involves multiple proton coupled electron transfer steps.Herein,we demonstrate that the two key steps(CO_(2)-^(*)COOH and^(*)CO-^(*)COH)efficiency can be precisely tuned by introducing proper amount of water dissociation center,i.e.,Fe single atoms,locally surrounding the Cu catalysts.In alkaline electrolyte,the Faradaic efficiency(FE)of multi-carbon(C^(2+))products exhibited a volcano type plot depending on the density of water dissociation center.A maximum FE for C^(2+)products of 73.2%could be reached on Cu nanoparticles supported on N-doped Carbon nanofibers with moderate Fe single atom sites,at a current density of 300 mA cm^(–2).Experimental and theoretical calculation results reveal that the Fe sites facilitate water dissociation kinetics,and the locally generated protons contribute significantly to the CO_(2)activation and^(*)CO protonation process.On the one hand,in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy(in-situ ATR-SEIRAS)clearly shows that the^(*)COOH intermediate can be observed at a lower potential.This phenomenon fully demonstrates that the optimized local water dissociation kinetics has a unique advantage in guiding the hydrogenation reaction pathway of CO₂molecules and can effectively reduce the reaction energy barrier.On the other hand,abundant^(*)CO and^(*)COH intermediates create favorable conditions for the asymmetric^(*)CO-^(*)COH coupling,significantly increasing the selectivity of the reaction for C^(2+)products and providing strong support for the efficient conversion of related reactions to the target products.This work provides a promising strategy for the design of a dual sites catalyst to achieve high FE of C^(2+)products through the optimized local water dissociation kinetics.展开更多
BACKGROUND: As a member of the LIM protein family Ⅱ, cysteine- and glycine-rich protein-2 (CRP2) has been demonstrated to play a role in the regulation of growth and differentiation of eukaryotic cells. Our previo...BACKGROUND: As a member of the LIM protein family Ⅱ, cysteine- and glycine-rich protein-2 (CRP2) has been demonstrated to play a role in the regulation of growth and differentiation of eukaryotic cells. Our previous study has demonstrated that CRP2 can be detected in the embryonic rat inner ear but not in the adult rat inner ear. However, at present, the expression of LIM protein family H members in stem or precursor cells has not been described. OBJECTIVE: To determine the expression and sub-cellular localization of CRP2 in olfactory stem cells. DESIGN, TIME AND SETTING: An experiment with repeated measures was performed in the Laboratory of Otorhinolaryngology, Head and Neck Surgery, Xijing Hospital, the Fourth Military Medical University from February 2008 to April 2008. MATERIALS: Olfactory stem cells, and rabbit-anti-CRP2 polyclonal antibody were prepared and kept in our laboratory. METHODS: Reverse transcription polymerase chain reaction and Western blot analysis were used to detect expression of CRP2 in olfactory stem cells. Immunocytochemistry was also used to localize CRP2 in olfactory stem cells. MAIN OUTCOME MEASURES: The expression and sub-cellular localization of CRP2 in rat olfactory stem cells. RESULTS: CRP2 expression was found in olfactory stem cells, and CRP2 was distributed in both the nucleus and the cytoplasm. CONCLUSION: Confirmation of the expression and distribution of CRP2 in olfactory stem cells.展开更多
To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a compar...To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems.展开更多
Nickle-based catalysts are commonly used for CO_(2)methanation.However,there is still potential to improve their catalytic performanc under mild conditions.In this study,we synthesized a series of Ru-Ni-Al catalysts f...Nickle-based catalysts are commonly used for CO_(2)methanation.However,there is still potential to improve their catalytic performanc under mild conditions.In this study,we synthesized a series of Ru-Ni-Al catalysts from Ru-doped NiAl-hydrotalcite using a hydrotherma method.The Ru-Ni-Al catalyst demonstrated much higher activity for CO_(2)methanation than the Ni-Al catalyst that did not have Ru doping Both experimental results and theoretical calculations indicate that the enhanced performance of the Ru-Ni-Al catalyst is related to electroni interactions between nickel(Ni)and ruthenium(Ru).The Ru sites transfer electrons to the Ni sites,increasing the local electron density of Ni which enhances the adsorption and activation of H_(2).Furthermore,the Ru-Ni metal interface sites improve the adsorption and activation of CO_(2)In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS)analysis indicates that adjusting the electronic structure of N sites can accelerate the production of intermediates HCOO^(*),while Ru-Ni intermetallic interface sites can directly dissociate CO_(2)into CO^(*).In addition,CO_(2)methanation on the Ru-Ni-Al catalyst follows HCOO^(*)-and CO^(*)-mediated pathways.This study underscores the potential fo enhancing CO_(2)methanation performance by modulating the electronic structure of Ni sites.展开更多
Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutral...Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutrality.However,the poor Li-ion conductivity of the molten-salt electrolytes at room temperature(RT)makes these batteries lose most of their capacity and power as the temperature falls below 80℃.Here,inspired by the greenhouse effect,we report an RT molten salt Li-CO_(2)battery where solar energy can be efficiently harvested and converted into heat that is further localized on the cathode consisting of plasmonic ruthenium(Ru)catalysts and Li_(2)CO_(3)-based products via a greenhouse-like phenomenon.As a result,the solar-driven molten salt Li-CO_(2)battery demonstrates a larger full discharge/charge capacity of 9.5 mA h/8.1 mA h,and a longer cycle lifespan of 250 cycles at 500 mA/g with a limited capacity of 500 mA h/g at RT than the molten salt Li-CO_(2)battery at 130℃.Notably,the average temperature of the cathode increases by 8℃ after discharge to 0.75 mA h,which indicates the infrared radiation from Ru catalysts can be effectively suppressed by discharged Li_(2)CO_(3)-based products.This battery technology paves the way for developing low-temperature molten salt energy storage devices.展开更多
We obtain exact spatial localized mode solutions of a(2+1)-dimensional nonlinear Schr¨odinger equation with constant diffraction and cubic-quintic nonlinearity in PT-symmetric potential, and study the linear stab...We obtain exact spatial localized mode solutions of a(2+1)-dimensional nonlinear Schr¨odinger equation with constant diffraction and cubic-quintic nonlinearity in PT-symmetric potential, and study the linear stability of these solutions. Based on these results, we further derive exact spatial localized mode solutions in a cubic-quintic medium with harmonic and PT-symmetric potentials. Moreover, the dynamical behaviors of spatial localized modes in the exponential diffraction decreasing waveguide and the periodic distributed amplification system are investigated.展开更多
The electron localization is considered as a promising approach to optimize electromagnetic waves(EMW)dissipation.However,it is still difficult to realize well-controlled electron localization and elucidate the relate...The electron localization is considered as a promising approach to optimize electromagnetic waves(EMW)dissipation.However,it is still difficult to realize well-controlled electron localization and elucidate the related EMW loss mechanisms for current researches.In this study,a novel two-dimensional MXene(Ti_(3)C_(2)T_(x))nanosheet decorated with Ni nanoclusters(Ni-NC)system to construct an effective electron localization model based on electronic orbital structure is explored.Theoretical simulations and experimental results reveal that the metal-support interaction between Ni-NC and MXene disrupts symmetric electronic environments,leading to enhanced electron localization and dipole polarization.Additionally,Ni-NC generate a strong interfacial electric field,strengthening heterointerface interactions and promoting interfacial polarization.As a result,the optimized material achieves an exceptional reflection loss(RLmin)of-54 dB and a broad effective absorption bandwidth of 6.8 GHz.This study offers critical insights into the in-depth relationship between electron localization and EMW dissipation,providing a pathway for electron localization engineering in functional materials such as semiconductors,spintronics,and catalysis.展开更多
Electrochemical reduction of CO_(2)to formate is economically attractive but improving the reaction selectivity and activity remains challenging.Herein,we introduce boron(B)atoms to modify the local electronic structu...Electrochemical reduction of CO_(2)to formate is economically attractive but improving the reaction selectivity and activity remains challenging.Herein,we introduce boron(B)atoms to modify the local electronic structure of bismuth with positive valence sites for boosting conversion of CO_(2)into formate with high activity and selectivity in a wide potential window.By combining experimental and computational investigations,our study indicates that B dopant differentiates the proton participations of rate-determining steps in CO_(2)reduction and in the competing hydrogen evolution.By comparing the experimental observations with the density functional theory,the dominant mechanistic pathway of B promoted formate generation and the B concentration modulated effects on the catalytic property of Bi are unravelled.This comprehensive study offers deep mechanistic insights into the reaction pathway at an atomic and molecular level and provides an effective strategy for the rational design of highly active and selective electrocatalysts for efficient CO_(2)conversion.展开更多
Programmed cel death (PCD) plays a critical role in the development of plant pigment glands, while H2O2, which is a kind of reactive oxygen species (ROS) produced by the aerobic metabolism of cels, acts as an impo...Programmed cel death (PCD) plays a critical role in the development of plant pigment glands, while H2O2, which is a kind of reactive oxygen species (ROS) produced by the aerobic metabolism of cels, acts as an important signal in this process. Here, we investigated the temporal and spatial dynamics of accumulated H2O2 in pigment glands ofGossypium hirsutum L. with 3,3-diaminobenzidine (DAB) staining, 2’,7’-dichlorodihydrolfuorescein diacetate (DCFH2)-DA lfuorescent labeling and CeCl3 cytochemical localization techniques. The results showed that thepigment glandsofG. hirsutum could generate H2O2, and the amount and localization of H2O2 variedat different developmental stages. At the early developmental stage, a smal amount of H2O2 accumulated in the vacuole membrane of pigment gland cels. At the intermediate stage, a large number of H2O2 appeared in the vacuole membrane, while cel wals started to accumulate a smal amount of H2O2. When pigment gland cel degraded, H2O2 mainly accumulated on the chloroplast envelope membrane of inner sheath cels. With the degradation of the sheath cels, H2O2was detected in cel wal and the membrane of secretory vesicles which contains the preliminary contents of pigment gland. With the pigment glands completely maturation, H2O2 would disappeared. The accumulation sites of H2O2are consistent with the process of PCD of individual gland cels, which started from the degra-dation of intracelular membrane and ended with the degradation of cel wals. Thus H2O2 probably plays an important role in the development of pigment glands. In addition, the development of pigment glands and the generation of H2O2 are not associated with the light, and no H2O2 was detected in the secretions of pigment glands.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52371204, 52201233,and 52031014)
文摘Electron-electron interactions(EEIs),quantum interference,and the effects of disorder on transport properties are essential topics in condensed matter physics.A series of our characterization work demonstrates that the morphology of Bi_(2)Te_(3)/MnTe bilayer film mainly depends on the magnetic substrate's growth mode and thickness.We propose that the temperature-dependent quantum interference of the electron wave function caused by disorder drives the transition from weak antilocalization(WAL) to weak localization(WL).Due to spin regulation,WL under low fields originates from the ferromagnetism in MnTe.The quantum interference effect(QIE) model analysis gives the degree of impurity scattering of the electron wave function.The electron wave is scattered by impurities,which causes the Berry phase to change from π to 0,producing a complete WL behavior.The stacked structure provides tunable degrees of freedom,allowing for independent optimization of topological properties and magnetic order through preferential growth orientation of topological insulator(TI) and magnetic layers,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647112)the Foundation of Donghua University
文摘Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).
文摘In this paper a new approach for PBL simulation, the non-local closure scheme based on the transient turbulence theory has been used. It was set up as an alternative to local closure schemes which physical concept is reasonable and distinct. A 2-D non-local closure model was developed in order to study the PBL structure and simulatesome interesting atmospheric processes over non-ulliform underlying surface, especially under the convective and unique weather conditions, such as sea-land circulation and the TIBL structure. The modelled results show good agreement with field measurement.
基金supported by the National Natural Science Foundation of China(No.52309132)Shandong Provincial Natural Science Foundation(No.ZR2023ME014).
文摘Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has been developed as a promising and attractive strategy to close the anthropogenic carbon cycle.Among various reduction products,multi-carbon(C_(2+))oxygenate and hydrocarbon compounds are desirable value-added fuels or chemicals.Extensive researches have revealed the crucial role of local CO_(2)and H_(2)O concentrations(or the adsorption of ^(*)CO and ^(*)H)close to the electrode/catalyst surface in manipulating multi-carbon generation pathways.In this mini reviews,we mainly summarized the recent progress of this field over the past five years.The modulating strategies for the hydrogen and carbon species ratio can be divided into three categories,i.e.,catalyst morphology,electrolyte composition and mass transfer.The effectiveness of the aforementioned strategies in promoting multi-carbon product selectivity was discussed in detail from the perspectives of tuning the local CO_(2)and H_(2)O concentrations and the subsequent thermodynamic-and kinetic-controlled ^(*)CO and ^(*)H ratios.Finally,the critical challenges remaining in balancing the ratio of CO_(2)and H_(2)O as well as potential upgrading directions for future research are addressed.
基金supported by the NSFC(12271122)the Fundamental Research Funds for the Central Universities.Han’s research was supported by the Fundamental Research Funds for the Central Universities(3072023GIP2401).
文摘In this paper,we consider the initial boundary value problem for the 2-D hyperbolic viscous Cahn-Hilliard equation.Firstly,we prove the existence and uniqueness of the local solution by the Galerkin method and contraction mapping principle.Then,using the potential well theory,we study the global well-posedness of the solution with initial data at different levels of initial energy,i.e.,subcritical initial energy,critical initial energy and arbitrary positive initial energy.For subcritical initial energy,we prove the global existence,asymptotic behavior and finite time blowup of the solution.Moreover,we extend these results to the critical initial energy using the scaling technique.For arbitrary positive initial energy,including the sup-critical initial energy,we obtain the sufficient conditions for finite time blow-up of the solution.As a further study for estimating the blowup time,we give a unified expression of the lower bound of blowup time for all three initial energy levels and estimate the upper bound of blowup time for subcritical and critical initial energy.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)produces valuable chemicals by consuming gaseous CO_(2)as well as protons from the electrolyte.Protons,produced by water dissociation in alkaline electrolyte,are critical for the reaction kinetics which involves multiple proton coupled electron transfer steps.Herein,we demonstrate that the two key steps(CO_(2)-^(*)COOH and^(*)CO-^(*)COH)efficiency can be precisely tuned by introducing proper amount of water dissociation center,i.e.,Fe single atoms,locally surrounding the Cu catalysts.In alkaline electrolyte,the Faradaic efficiency(FE)of multi-carbon(C^(2+))products exhibited a volcano type plot depending on the density of water dissociation center.A maximum FE for C^(2+)products of 73.2%could be reached on Cu nanoparticles supported on N-doped Carbon nanofibers with moderate Fe single atom sites,at a current density of 300 mA cm^(–2).Experimental and theoretical calculation results reveal that the Fe sites facilitate water dissociation kinetics,and the locally generated protons contribute significantly to the CO_(2)activation and^(*)CO protonation process.On the one hand,in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy(in-situ ATR-SEIRAS)clearly shows that the^(*)COOH intermediate can be observed at a lower potential.This phenomenon fully demonstrates that the optimized local water dissociation kinetics has a unique advantage in guiding the hydrogenation reaction pathway of CO₂molecules and can effectively reduce the reaction energy barrier.On the other hand,abundant^(*)CO and^(*)COH intermediates create favorable conditions for the asymmetric^(*)CO-^(*)COH coupling,significantly increasing the selectivity of the reaction for C^(2+)products and providing strong support for the efficient conversion of related reactions to the target products.This work provides a promising strategy for the design of a dual sites catalyst to achieve high FE of C^(2+)products through the optimized local water dissociation kinetics.
文摘BACKGROUND: As a member of the LIM protein family Ⅱ, cysteine- and glycine-rich protein-2 (CRP2) has been demonstrated to play a role in the regulation of growth and differentiation of eukaryotic cells. Our previous study has demonstrated that CRP2 can be detected in the embryonic rat inner ear but not in the adult rat inner ear. However, at present, the expression of LIM protein family H members in stem or precursor cells has not been described. OBJECTIVE: To determine the expression and sub-cellular localization of CRP2 in olfactory stem cells. DESIGN, TIME AND SETTING: An experiment with repeated measures was performed in the Laboratory of Otorhinolaryngology, Head and Neck Surgery, Xijing Hospital, the Fourth Military Medical University from February 2008 to April 2008. MATERIALS: Olfactory stem cells, and rabbit-anti-CRP2 polyclonal antibody were prepared and kept in our laboratory. METHODS: Reverse transcription polymerase chain reaction and Western blot analysis were used to detect expression of CRP2 in olfactory stem cells. Immunocytochemistry was also used to localize CRP2 in olfactory stem cells. MAIN OUTCOME MEASURES: The expression and sub-cellular localization of CRP2 in rat olfactory stem cells. RESULTS: CRP2 expression was found in olfactory stem cells, and CRP2 was distributed in both the nucleus and the cytoplasm. CONCLUSION: Confirmation of the expression and distribution of CRP2 in olfactory stem cells.
基金supported by the Jiangsu Provincial Key Research and Development Program(BE2022072)the National Natural Science Foundation of China(12141304)the Natural Science Foundation of Jiangsu Province(BK20231134).
文摘To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems.
基金support from the National Natural Science Foundation of China(22278006)Open Project Fund from Guangdong Provincial Key Laboratory of Materials and Technology for Energy Conversion,Guangdong Technion-Israel Institute of Technology(MATEC2024KF009)Open Research Fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D13)。
文摘Nickle-based catalysts are commonly used for CO_(2)methanation.However,there is still potential to improve their catalytic performanc under mild conditions.In this study,we synthesized a series of Ru-Ni-Al catalysts from Ru-doped NiAl-hydrotalcite using a hydrotherma method.The Ru-Ni-Al catalyst demonstrated much higher activity for CO_(2)methanation than the Ni-Al catalyst that did not have Ru doping Both experimental results and theoretical calculations indicate that the enhanced performance of the Ru-Ni-Al catalyst is related to electroni interactions between nickel(Ni)and ruthenium(Ru).The Ru sites transfer electrons to the Ni sites,increasing the local electron density of Ni which enhances the adsorption and activation of H_(2).Furthermore,the Ru-Ni metal interface sites improve the adsorption and activation of CO_(2)In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS)analysis indicates that adjusting the electronic structure of N sites can accelerate the production of intermediates HCOO^(*),while Ru-Ni intermetallic interface sites can directly dissociate CO_(2)into CO^(*).In addition,CO_(2)methanation on the Ru-Ni-Al catalyst follows HCOO^(*)-and CO^(*)-mediated pathways.This study underscores the potential fo enhancing CO_(2)methanation performance by modulating the electronic structure of Ni sites.
基金supported by the National Natural Science Foundation of China(NSFC,62104099,61921005,62105048,62204117 and 62073299)the Science and Technology Research Program of Chongqing Education Commission(KJQN202100633)+5 种基金the Postdoctoral Science Foundation of China(2021M693768 and 2021M701057)the Key Scientific Research Project in Colleges and Universities of Henan Province,China(21A416001)the Key Laboratory for Special Functional Materials(KEKT2022-06)the Natural Science Foundation of Jiangsu Province(BK20210275 and BK20230498)the support from Jiangsu Province Science Foundation for Youths(BK20210275)National Natural Science Foundation of China(NSFC,62204117)。
文摘Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutrality.However,the poor Li-ion conductivity of the molten-salt electrolytes at room temperature(RT)makes these batteries lose most of their capacity and power as the temperature falls below 80℃.Here,inspired by the greenhouse effect,we report an RT molten salt Li-CO_(2)battery where solar energy can be efficiently harvested and converted into heat that is further localized on the cathode consisting of plasmonic ruthenium(Ru)catalysts and Li_(2)CO_(3)-based products via a greenhouse-like phenomenon.As a result,the solar-driven molten salt Li-CO_(2)battery demonstrates a larger full discharge/charge capacity of 9.5 mA h/8.1 mA h,and a longer cycle lifespan of 250 cycles at 500 mA/g with a limited capacity of 500 mA h/g at RT than the molten salt Li-CO_(2)battery at 130℃.Notably,the average temperature of the cathode increases by 8℃ after discharge to 0.75 mA h,which indicates the infrared radiation from Ru catalysts can be effectively suppressed by discharged Li_(2)CO_(3)-based products.This battery technology paves the way for developing low-temperature molten salt energy storage devices.
基金Supported by the Project of Technology Office in Zhejiang Province under Grant No.2014C32006the Special Foundation for theoretical physics Research Program of China under Grant No.11447124+1 种基金National Natural Science Foundation of China under Grant No.11374254the Higher School Visiting Scholar Development under Grant No.FX2013103
文摘We obtain exact spatial localized mode solutions of a(2+1)-dimensional nonlinear Schr¨odinger equation with constant diffraction and cubic-quintic nonlinearity in PT-symmetric potential, and study the linear stability of these solutions. Based on these results, we further derive exact spatial localized mode solutions in a cubic-quintic medium with harmonic and PT-symmetric potentials. Moreover, the dynamical behaviors of spatial localized modes in the exponential diffraction decreasing waveguide and the periodic distributed amplification system are investigated.
基金supported by the National Key Research and Development Program of China (Grant No. 2024YFE0100600)the National Natural Science Foundation of China (No 52373303)+2 种基金the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)the Fundamental Research Funds for the Central Universitiesthe Interdisciplinary Joint Research and Development Project of Tongji University (No 2024-4-ZD-03)
文摘The electron localization is considered as a promising approach to optimize electromagnetic waves(EMW)dissipation.However,it is still difficult to realize well-controlled electron localization and elucidate the related EMW loss mechanisms for current researches.In this study,a novel two-dimensional MXene(Ti_(3)C_(2)T_(x))nanosheet decorated with Ni nanoclusters(Ni-NC)system to construct an effective electron localization model based on electronic orbital structure is explored.Theoretical simulations and experimental results reveal that the metal-support interaction between Ni-NC and MXene disrupts symmetric electronic environments,leading to enhanced electron localization and dipole polarization.Additionally,Ni-NC generate a strong interfacial electric field,strengthening heterointerface interactions and promoting interfacial polarization.As a result,the optimized material achieves an exceptional reflection loss(RLmin)of-54 dB and a broad effective absorption bandwidth of 6.8 GHz.This study offers critical insights into the in-depth relationship between electron localization and EMW dissipation,providing a pathway for electron localization engineering in functional materials such as semiconductors,spintronics,and catalysis.
基金This work was supported by the Shenzhen Science and Technology Program(KQTD20190929173914967)。
文摘Electrochemical reduction of CO_(2)to formate is economically attractive but improving the reaction selectivity and activity remains challenging.Herein,we introduce boron(B)atoms to modify the local electronic structure of bismuth with positive valence sites for boosting conversion of CO_(2)into formate with high activity and selectivity in a wide potential window.By combining experimental and computational investigations,our study indicates that B dopant differentiates the proton participations of rate-determining steps in CO_(2)reduction and in the competing hydrogen evolution.By comparing the experimental observations with the density functional theory,the dominant mechanistic pathway of B promoted formate generation and the B concentration modulated effects on the catalytic property of Bi are unravelled.This comprehensive study offers deep mechanistic insights into the reaction pathway at an atomic and molecular level and provides an effective strategy for the rational design of highly active and selective electrocatalysts for efficient CO_(2)conversion.
基金supported by the National Natural Science Foundation of China (31270428)
文摘Programmed cel death (PCD) plays a critical role in the development of plant pigment glands, while H2O2, which is a kind of reactive oxygen species (ROS) produced by the aerobic metabolism of cels, acts as an important signal in this process. Here, we investigated the temporal and spatial dynamics of accumulated H2O2 in pigment glands ofGossypium hirsutum L. with 3,3-diaminobenzidine (DAB) staining, 2’,7’-dichlorodihydrolfuorescein diacetate (DCFH2)-DA lfuorescent labeling and CeCl3 cytochemical localization techniques. The results showed that thepigment glandsofG. hirsutum could generate H2O2, and the amount and localization of H2O2 variedat different developmental stages. At the early developmental stage, a smal amount of H2O2 accumulated in the vacuole membrane of pigment gland cels. At the intermediate stage, a large number of H2O2 appeared in the vacuole membrane, while cel wals started to accumulate a smal amount of H2O2. When pigment gland cel degraded, H2O2 mainly accumulated on the chloroplast envelope membrane of inner sheath cels. With the degradation of the sheath cels, H2O2was detected in cel wal and the membrane of secretory vesicles which contains the preliminary contents of pigment gland. With the pigment glands completely maturation, H2O2 would disappeared. The accumulation sites of H2O2are consistent with the process of PCD of individual gland cels, which started from the degra-dation of intracelular membrane and ended with the degradation of cel wals. Thus H2O2 probably plays an important role in the development of pigment glands. In addition, the development of pigment glands and the generation of H2O2 are not associated with the light, and no H2O2 was detected in the secretions of pigment glands.