Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed...Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed for the dual-functional detection of environmental pollutants.This fluorescence-quenching-based sensor exhibited excep-tional sensitivity for both 2,4,6-trinitrophenol(TNP)and tetracycline(TC),achieving remarkably low detection lim-its of 1.96×10^(-6)and 1.71×10^(-7)mol·L^(-1),respectively.Notably,the system exhibited 99%fluorescence quenching ef-ficiency for TC,indicating ultra-efficient analyte recognition.The detection performance surpasses most reported lu-minescent MOF sensors,attributed to synergistic mechanisms of fluorescence resonance energy transfer(FRET)and photoinduced electron transfer(PET).CCDC:2446483.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
文摘Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed for the dual-functional detection of environmental pollutants.This fluorescence-quenching-based sensor exhibited excep-tional sensitivity for both 2,4,6-trinitrophenol(TNP)and tetracycline(TC),achieving remarkably low detection lim-its of 1.96×10^(-6)and 1.71×10^(-7)mol·L^(-1),respectively.Notably,the system exhibited 99%fluorescence quenching ef-ficiency for TC,indicating ultra-efficient analyte recognition.The detection performance surpasses most reported lu-minescent MOF sensors,attributed to synergistic mechanisms of fluorescence resonance energy transfer(FRET)and photoinduced electron transfer(PET).CCDC:2446483.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.