期刊文献+
共找到1,697篇文章
< 1 2 85 >
每页显示 20 50 100
Enhancing Cycle Life of Graphite‖LiFePO_(4)Batteries via Copper Substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)Cathode Prelithiation Additive
1
作者 Jian-Ming Zheng Jing-Wen Zhang Tian-Peng Jiao 《电化学(中英文)》 北大核心 2025年第2期17-27,共11页
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni... Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs. 展开更多
关键词 Li_(2)Ni_(1-x)Cu_(x)O_(2) Cathode prelithiation additive LiFePO_(4)battery cycle life Grid energy storage
在线阅读 下载PDF
The Role of GSPT2 in Tumor Cell Cycle Regulation: Mechanisms and Clinical Significance
2
作者 Yu Cai Yumei Wu 《Journal of Cancer Therapy》 2025年第1期18-27,共10页
GSPT2 (G1 to S phase transition protein 2) has emerged as a critical regulator of the cell cycle and has garnered increased attention for its role in tumor biology in recent years. This review explores the multifacete... GSPT2 (G1 to S phase transition protein 2) has emerged as a critical regulator of the cell cycle and has garnered increased attention for its role in tumor biology in recent years. This review explores the multifaceted functions of GSPT2, highlighting its involvement in cell cycle regulation and signaling pathways, as well as its potential as a tumor biomarker. By analyzing the latest research findings, we examine the expression patterns of GSPT2 across various tumor types and its correlation with clinical outcomes, underscoring its significance in tumor initiation and progression. Furthermore, we discuss the prospects of GSPT2 as a therapeutic target, providing new insights for future research directions. 展开更多
关键词 GSPT2 TUMOR BIOMARKER Cell cycle SIGNALING
暂未订购
CO_(2)mineralization curing steel slag-fly ash-Portland cement ternary paste:Mechanical properties,microstructure and life cycle assessment
3
作者 YI Guo-yang TIAN Wei +2 位作者 SHI Jun-jie GUO Jian CHENG Xu 《Journal of Central South University》 2025年第7期2487-2510,共24页
Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by u... Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment. 展开更多
关键词 ternary paste CO_(2)curing response surface methodology life cycle assessment
在线阅读 下载PDF
The role of sulfur cycle in new particle formation:Cycloaddition reaction of SO_(3)to H_(2)S
4
作者 Haijie Zhang Wei Wang +5 位作者 Liang Fan Junling Li Yanqin Ren Hong Li Rui Gao Yisheng Xu 《Journal of Environmental Sciences》 2025年第2期489-501,共13页
The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process,which is the first step of new particle formation(NPF).In the present study,cycloaddition reaction mechanism of sulfur trio... The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process,which is the first step of new particle formation(NPF).In the present study,cycloaddition reaction mechanism of sulfur trioxide(SO_(3))to hydrogen sulfide(H_(2)S)which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations.Gas-phase stability and nucleation potential of the product thiosulfuric acid(H_(2)S_(2)O_(3),TSA)were further analyzed to evaluate its atmospheric impact.Without any catalysts,the H_(2)S+SO_(3)reaction is infeasible with a barrier of 24.2 kcal/mol.Atmospheric nucleation precursors formic acid(FA),sulfuric acid(SA),and water(H_(2)O)could effectively lower the reaction barriers as catalysts,even to a barrierless reaction with the efficiency of cis-SA>trans-FA>trans-SA>H_(2)O.Subsequently,the gas-phase stability of TSA was investigated.A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA.Furthermore,topological and kinetic analysis were conducted to determine the nucleation potential of TSA.Atmospheric clusters formed by TSA and atmospheric nucleation precursors(SA,ammonia NH_(3),and dimethylamine DMA)were thermodynamically stable.Moreover,the gradually decreasing evaporation coefficients for TSA-base clusters,particularly for TSA-DMA,suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher.The present new reaction mechanismmay contributes to a better understanding of atmospheric sulfur cycle and NPF. 展开更多
关键词 New particle formation(NPF) Atmospheric sulfur cycle Nucleation process Reaction mechanism Hydrogen sulfide(H_(2)S) Atmospheric Cluster Dynamic Code (ACDC)
原文传递
Anchoring oxygen on LiNi_(0.94)Co_(0.05)Mn_(0.01)O_(2)surface by coating Ti_(x)NbB_((1−x))C_(2)boosts long-cycle stability of all-solid-state lithium batteries
5
作者 Jingchi Zhang Ze Hua +6 位作者 Ziqi Wu Xinting Cao Wen Yang Ruiwen Shao Yu Bai Zhenhua Wang Kening Sun 《Journal of Energy Chemistry》 2025年第8期183-193,共11页
To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density... To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density.However,their practical deployment is hindered by accelerated interface degradation and capacity decay originating from surface oxygen release and lattice oxygen activation during prolonged cycling.In this study,Ti_(x)NbB_((1−x))C_(2)was successfully coated on the surface of LiNi_(0.94)Co_(0.05)Mn_(0.01)O_(2).Density functional theory(DFT)calculations first elucidate a“point-to-point”anchoring mechanism where each surface oxygen atom coordinates with single species(Ti/Nb/B)offered by Ti_(x)NbB_((1−x))C_(2),which forms robust O–M bonds and sustain a stable interface structure.The electron energy loss spectroscopy(EELS)reveals the segregation of Ti/Nb toward subsurface layers during cycling,creating an optimized lattice oxygen coordination environment and suppressing oxygen activation.The dual oxygen stabilization mechanism dramatically improves the reversibility of phase transition and the structural stability of the Ni-rich cathode materials.Moreover,Ti_(x)NbB_((1−x))C_(2)as the protective layer decreases mechanical strain and suppresses the parasitic reactions.Consequently,the engineered cathode delivers 91%capacity retention after 1000 cycles at 0.3 C,suggesting excellent cycling stability.The research delivers a new design philosophy for the coating layer that can stabilize surface oxygen.Furthermore,the atomistic understanding of the structure–property relationship of the Ni-rich cathode materials provides valuable guidance for the future design of new cathode materials with superior structural stability in ASSLBs. 展开更多
关键词 Ni-rich cathode Ti_(x)NbB_((1−x))C_(2)coating "Point-to-point"anchoring Element segregation All-solid-state lithium batteries Long cycle stability
在线阅读 下载PDF
一种具有噪声整形功能的2bit/cycle SAR ADC的设计 被引量:2
6
作者 陈志铭 高一格 +1 位作者 张蕾 王兴华 《北京理工大学学报》 EI CAS CSCD 北大核心 2022年第5期536-542,共7页
基于180nm CMOS工艺,设计了一种2 bit/cycle结构的8 bit、100 MS/s逐次逼近模数转换器(SAR ADC).采用两个DAC电容阵列SIG_DAC、REF_DAC实现了2 bit/cycle量化,其中SIG_DAC采用上极板采样大大减少了电容数目,分裂电容式结构和优化的异步... 基于180nm CMOS工艺,设计了一种2 bit/cycle结构的8 bit、100 MS/s逐次逼近模数转换器(SAR ADC).采用两个DAC电容阵列SIG_DAC、REF_DAC实现了2 bit/cycle量化,其中SIG_DAC采用上极板采样大大减少了电容数目,分裂电容式结构和优化的异步SAR逻辑提高了ADC的转换速度.应用一种噪声整形技术,有效提高了过采样时ADC的信噪失真比(SNDR).在1.8 V电源电压和100 MS/s采样率条件下,未加入噪声整形时,仿真得到ADC的SNDR为46.22 dB,加入噪声整形后,过采样率为10时,仿真得到的SNDR为57.49 dB,提高了11.27 dB,ADC的有效位数提高了约1.88 bit,达到9.26 bit. 展开更多
关键词 2 bit/cycle 逐次逼近型模数转换器 噪声整形
在线阅读 下载PDF
Carbon emissions in China’s steel industry from a life cycle perspective:Carbon footprint insights 被引量:4
7
作者 Xiaocong Song Shuai Du +5 位作者 Chenning Deng Peng Shen Minghui Xie Ci Zhao Chen Chen Xiaoyu Liu 《Journal of Environmental Sciences》 2025年第2期650-664,共15页
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch... China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system. 展开更多
关键词 Iron and steel industry Life cycle Carbon dioxide(CO_(2))emissions Carbon footprint China
原文传递
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:4
8
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis Multi-objective optimization Decision-making methods
在线阅读 下载PDF
Involvement of the ABA-and H_(2)O_(2)-Mediated Ascorbate-Glutathione Cycle in the Drought Stress Responses of Wheat Roots 被引量:1
9
作者 Mengyuan Li Zhongye Gao +2 位作者 Lina Jiang Leishan Chen Jianhui Ma 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期329-342,共14页
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th... Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities. 展开更多
关键词 ABA H_(2)O_(2) AsA-GSH cycle drought stress wheat roots
在线阅读 下载PDF
“教学做合一”思想引领下信息科技实验教学的探索与实践--以《基于micro:bit v2的可移动校园静音守护机器人》实验教学为例
10
作者 王欣蓉 《福建陶研》 2025年第2期28-34,共7页
本文深入探讨了“教学做合一”教育理念在初中信息科技实验教学中的应用,该理念强调将教学、学习与实践紧密结合。基于这一理念,二次开发了闽教版信息技术八下教材,设计并实施了《基于micro:bit v2的可移动校园静音守护机器人》这一实... 本文深入探讨了“教学做合一”教育理念在初中信息科技实验教学中的应用,该理念强调将教学、学习与实践紧密结合。基于这一理念,二次开发了闽教版信息技术八下教材,设计并实施了《基于micro:bit v2的可移动校园静音守护机器人》这一实验教学案例。旨在验证超声波传感器的原理、让学生亲身体验micro:bitv2主控板及无线遥控技术的实际应用。本次实验活动不仅有效融入“教学做合一”理念,还显著提升了学生的自主学习能力,增强了实践操作能力和创新思维能力,为学生未来的信息技术学习和应用奠定坚实基础。 展开更多
关键词 “教学做合一” 信息科技实验教学 micro:bit v2可移动校园静音守护机器人
在线阅读 下载PDF
NCAPD2 serves as a potential prognostic biomarker for lung adenocarcinoma and promotes cell proliferation,migration,invasion and cell cycle in vitro
11
作者 PEILING WU LIFANG ZHAO +5 位作者 HONGYAN ZHANG YUEYAN LOU DONGFANG CHEN SHAN XUE XUEQING LIU HANDONG JIANG 《Oncology Research》 SCIE 2024年第9期1439-1452,共14页
Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucid... Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD. 展开更多
关键词 NCAPD2 LUAD Prognosis Immune infiltration Cell cycle
暂未订购
Mechanical response of Q_(2)loess stratum surrounding a hydraulic tunnel under dry-wet cycles
12
作者 Sen Peng Caihui Zhu +5 位作者 Letian Zhai Haoding Xu Yubo Li Guohua Deng Miaomiao Ge Yuan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期4955-4970,共16页
Understanding the mechanical response of Q2 loess subjected to dry-wet cycles(DWCs)is the premise for the rational design of a hydraulic tunnel.Taking the Hanjiang-to-Weihe south line project in China as the research ... Understanding the mechanical response of Q2 loess subjected to dry-wet cycles(DWCs)is the premise for the rational design of a hydraulic tunnel.Taking the Hanjiang-to-Weihe south line project in China as the research background,the microstructure evolution,strength degradation and compression characteristics of Q2 loess under different DWCs were investigated,and the fluid-solid coupling analysis of the hydraulic tunnel was carried out using the FLAC3D software.The amplification effect of tunnel surrounding soil pressure(SSP)and its influence on the long-term stability of the tunnel under different DWCs were obtained.The results showed that the pore microstructure parameters of the undisturbed and remolded loess basically tend to be stable after the number of DWCs exceeds 3.The porosity of Q2 loess is increased by 26%.The internal friction angle and cohesion of Q2 loess are decreased by 35%and 31%,respectively.The vertical strain of Q2 loess is increased by 55%after considering the DWCs.After the DWCs stabilized,the SSP ratio is increased between 10%and 25%.With the increase in buried depth of the tunnel,the SSP ratio is increased by 8%e10%.The SSP is reduced from 8%to 16%by the rise in groundwater level.As the number of DWCs increases and the burial depth of the tunnel decreases,the distribution of SSP becomes progressively more non-uniform.Based on the amplification factor and the modified compressive arch theory,the SSP distribution model of loess tunnel was proposed,which can be preliminarily applied to the design of supporting structures considering DWCs. 展开更多
关键词 Q2 loess Hydraulic tunnel Surrounding soil pressure(SSP) Dry-wet cycles(DWCs) Amplification effect
在线阅读 下载PDF
Leucine-rich repeat-containing protein 19 suppresses colorectal cancer by targeting cyclin-dependent kinase 6/E2F1 and remodeling the immune microenvironment
13
作者 Si-Si Huang Wei Chen +5 位作者 Deep K Vaishnani Li-Juan Huang Ji-Zhen Li Shi-Rui Huang Yan-Zhen Li Qi-Peng Xie 《World Journal of Gastroenterology》 2025年第25期91-121,共31页
BACKGROUND Colorectal cancer(CRC)is a leading cause of cancer-related mortality worldwide,primarily due to tumor heterogeneity and treatment resistance.The leucine-rich repeat-containing protein 19(LRRC19)has been lin... BACKGROUND Colorectal cancer(CRC)is a leading cause of cancer-related mortality worldwide,primarily due to tumor heterogeneity and treatment resistance.The leucine-rich repeat-containing protein 19(LRRC19)has been linked to immune regulation and tumor suppression,yet its specific role in CRC remains poorly understood.AIM To investigate the tumor-suppressive role of LRRC19 in CRC,focusing on cell cycle,immune microenvironment,and chemotherapy response.METHODS Bioinformatics analyses of Gene Expression Omnibus and The Cancer Genome Atlas databases identified differentially expressed genes in CRC.LRRC19 exp-ression was validated in CRC tissues and cell lines by quantitative PCR,immuno-histochemistry,and Western blotting.Functional assays,including proliferation,soft agar colony formation,flow cytometry,and xenograft models,assessed biological effects.Mechanistic studies with dual-luciferase reporter assays,molecular docking,and drug sensitivity testing explored LRRC19’s interaction with the cyclin-dependent kinase 6(CDK6)/E2F1 axis and oxaliplatin(OXA)response.Single-cell sequencing and immune infiltration analyses assessed its impact on the immune microenvironment.RESULTS LRRC19 expression was significantly downregulated in CRC and associated with poor prognosis.Overexpression of LRRC19 inhibited CRC cell proliferation,induced G0/G1 phase arrest,and suppressed tumor growth in vivo.Mechanistically,LRRC19 suppressed CDK6 transcription by downregulating E2F1,leading to cell cycle arrest.Additionally,LRRC19 promoted immune cell infiltration,particularly B cells and CD4+T cells,while decreasing immunosuppressive cells.LRRC19 also sensitized CRC cells to OXA,enhancing chemotherapy efficacy.CONCLUSION LRRC19 suppresses CRC by targeting the CDK6/E2F1 axis,modulating the immune microenvironment,and enhancing chemotherapy sensitivity,making it a promising therapeutic target for precision medicine in CRC. 展开更多
关键词 Colorectal cancer Tumor suppressor Cell cycle arrest Immune microenvironment Chemotherapy sensitivity cyclin-dependent kinase 6/E2F1 axis Oxaliplatin response Leucine-rich repeat-containing protein 19 Immune infiltration Precision medicine
暂未订购
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
14
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 Refrigeration cycle Power cycle System Performance Transcritical CO2 cycles Working Fluid
在线阅读 下载PDF
Numerical Models and Methods of Atmospheric Parameters Originating in the Formation of the Earth’s Climatic Cycle
15
作者 Wend Dolean Arsène Ilboudo Kassoum Yamba +1 位作者 Windé Nongué Daniel Koumbem Issaka Ouédraogo 《Atmospheric and Climate Sciences》 2024年第2期277-286,共10页
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o... Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. . 展开更多
关键词 Atmospheric Parameter 1 Climatic cycle 2 Numerical Models 3
在线阅读 下载PDF
Selective COX-2 inhibitor,NS-398,suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest 被引量:27
16
作者 Ji Yeon Baek Wonhee Hur +2 位作者 Jin Sang Wang Si Hyun Bae Seung Kew Yoon 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第8期1175-1181,共7页
AIM: To investigate the growth inhibitory mechanism of NS-398, a selective cyclooxygenase-2 (COX-2) inhibitor, in two hepatocellular carcinoma (HCC) cell lines (HepG2 and Huh7). METHODS: HepG2 and Huh7 cells were trea... AIM: To investigate the growth inhibitory mechanism of NS-398, a selective cyclooxygenase-2 (COX-2) inhibitor, in two hepatocellular carcinoma (HCC) cell lines (HepG2 and Huh7). METHODS: HepG2 and Huh7 cells were treated with NS-398. Its effects on cell viability, cell proliferation, cell cycles, and gene expression were respectively evaluated by water-soluble tetrazolium salt (WST-1) assay, 4’-6-diamidino-2-phenylindole (DAPI) staining, flow cytometer analysis, and Western blotting, with dimethyl sulfoxide (DMSO) as positive control. RESULTS: NS-398 showed dose- and time-dependent growth-inhibitory effects on the two cell lines. Proliferating cell nuclear antigen (PCNA) expressions in HepG2 and Huh7 cells, particularly in Huh7 cells were inhibited in a time- and dose-independent manner. NS-398 caused cell cycle arrest in the G1 phase with cell accumulation in the sub-G1 phase in HepG2 and Huh7 cell lines. No evidence of apoptosis was observed in two cell lines. CONCLUSION: NS-398 reduces cell proliferation by inducing cell cycle arrest in HepG2 and Huh7 cell lines, and COX-2 inhibitors may have potent chemoprevention effects on human hepatocellular carcinoma. 展开更多
关键词 Selective cyclooxygenase 2 inhibitor Cell growth Cell cycle Hepatocellular carcinoma cells
暂未订购
Arsenic Trioxide Inhibits Proliferation in K562 Cells by Changing Cell Cycle and Survivin Expression 被引量:4
17
作者 伍晓菲 陈智超 +4 位作者 刘仲萍 周浩 游泳 黎纬明 邹萍 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第4期342-344,353,共4页
To study the mechanisms involved in the inhibition of chronic myeloid leukemic cells (K562) proliferation induced by arsenic trioxide (As 2O 3) and to explore the potential role of Survivin, an inhibitor of apoptosi... To study the mechanisms involved in the inhibition of chronic myeloid leukemic cells (K562) proliferation induced by arsenic trioxide (As 2O 3) and to explore the potential role of Survivin, an inhibitor of apoptosis protein, in the regulation of As 2O 3 induced cell apoptosis, K562 cells were cultured with As 2O 3 of different concentrations. Cells were collected for proliferation analysis by MTT assay. Cell cycle distribution and cell apoptosis were analyzed by flow cytometry. Expression of Survivin protein and mRNA were detected by flow cytometry and RT-PCR, respectively. Our results showed that As 2O 3 (2-10 μmol/L) inhibited K562 cells growth effectively, but it did not induce cells apoptosis significantly. The percentage of K562 cells at G 2/M phase increased in proportion to As 2O 3 concentrations, and the expression of Survivin mRNA and content of Survivin protein was up-regulated accordingly. It is concluded that As 2O 3 inhibited K562 cells growth by inducing cell cycle arrest mainly at G 2/M phase. Over-expression of Survivin gene and protein might be one of the possible mechanisms contributing to K562 cells' resistance to As 2O 3-induced apoptosis. 展开更多
关键词 arsenic trioxide K562 G 2/M cell cycle arrest SURVIVIN
暂未订购
Dexamethasone suppresses DU145 cell proliferation and cell cycle through inhibition of the extracellular signal-regulated kinase 1 /2 pathway and cyclin D1 expression 被引量:3
18
作者 Qing-Zhen Gao Jia-Ju Lu +3 位作者 Zi-Dong Liu Hui Zhang Shao-Mei Wang He Xu 《Asian Journal of Andrology》 SCIE CAS CSCD 2008年第4期635-641,共7页
Aim: To determine the mechanisms of glucocorticoids in inhibiting advanced prostate cancer growth. Methods: The cell proliferation and cell cycle of prostate cancer DU145 cells following dexamethasone treatment were... Aim: To determine the mechanisms of glucocorticoids in inhibiting advanced prostate cancer growth. Methods: The cell proliferation and cell cycle of prostate cancer DU145 cells following dexamethasone treatment were determined by proliferation assay and fluorescence-activated cell sorter. Western blot analysis was carried out to evaluate the effects of dexamethasone on phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and expression of cyclin D1 in DU145 cells with or without glucocorticoid receptor (GR) antagonist RU486. Reverse transcription- polymerase chain reaction verified the expression of GR mRNA in DU145 cells. Results: Dexamethasone significantly inhibited DU 145 cell proliferation at the G0/G1 phase. Westem blot analysis showed a dramatic reduction of ERK1/2 activity and cyclin D1 expression in dexamethasone-treated cells. The decreased phosphorylation of ERK1/2 in dexamethasone-treated cells was attenuated by GR blockade. Additionally, the effects of dexamethasone in inhibiting cyclin D1 expression were altered by GR blockade. Conclusion: Dexamethasone suppresses DU145 cell proliferation and cell cycle, and the underlying mechanisms are through the inhibition of phosphorylation of ERK1/2 and cyclin D1 expression. The inhibition of ERK1/2 phosphorylation and cyclin D1 expression is attenuated by GR blockade, suggesting that GR regulates ERK1/2 and cyclin D1 pathways. These observations suggest that dexamethasone has a potential clinical application in prostate cancer therapy. 展开更多
关键词 DEXAMETHASONE prostate cancer extracellular signal-regulated kinase 1/2 cell cycle
暂未订购
Stevenleaf from Gynostemma Pentaphyllum inhibits human hepatoma cell(HepG2)through cell cycle arrest and apoptotic induction 被引量:5
19
作者 Sayed Sajid Hussain Fan Zhang +4 位作者 Yuanyuan Zhang Kiran Thakur Mahrukh Naudhani Carlos L.Cespedes-Acuna Zhaojun Wei 《Food Science and Human Wellness》 SCIE 2020年第3期295-303,共9页
The anticancer activity of stevenleaf(SV)on the basis of cell viability,cell cycle,and apoptosis induction in HepG2 cancer cells were evaluated.SV controlled the growth of HepG2 cells with IC50 of 139.82μmol/L for 24... The anticancer activity of stevenleaf(SV)on the basis of cell viability,cell cycle,and apoptosis induction in HepG2 cancer cells were evaluated.SV controlled the growth of HepG2 cells with IC50 of 139.82μmol/L for 24 h,IC50 of 119.12μmol/L for 48 h and cell cycle arrested at G0/G1 phase,induced cell apoptosis and enhanced intracellular ROS generation.For cell cycle arrest,the mRNA expression levels of p21,p27 and p53 were up-regulated,while the expression levels of Cyclin A,Cyclin D1,Cyclin E and CDK1/2 were downregulated.SV efficiently up-regulated TNF R1,TRADD1 and FADD and down-regulated Caspase8 for cell death receptors;similarly,up-regulated Bax,Bak,Cytc,Apaf1,Caspase3 and Caspase9,and down-regulated Bcl2,Bcl xl and Bad for mitochondrial signal pathway.SV induced the mTOR-mediated cell apoptosis in HepG2 cells via activation of Akt and AMPK.The mechanistic explanation for the anticancer activity of SV as functional food can be derived from above results. 展开更多
关键词 Gynostemma Pentaphyllum Stevenleaf HepG2 cell Cell cycle Apoptosis
在线阅读 下载PDF
Vitamin C Inhibits Benzo[a]pyrene-Induced Cell Cycle Changes Partly via Cyclin D1/E2F Pathway in Human Embryo Lung Fibroblasts 被引量:1
20
作者 AI GAO BING-CI LIU +6 位作者 XIANG-LIN SHI CHUAN-SHU HUANG XIAO-WEI JIA BAO-RONG YOU MENG YE FU-HAI SHEN HONG-JU DU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第3期239-244,共6页
Objective To study the molecular mechanism of the inhibitory effects of vitamin C on benzo[a]pyrene (B[a]P)-induced changes of cell cycle in human embryo lung fibroblast (HELF) cells. Methods The stable transfecta... Objective To study the molecular mechanism of the inhibitory effects of vitamin C on benzo[a]pyrene (B[a]P)-induced changes of cell cycle in human embryo lung fibroblast (HELF) cells. Methods The stable transfectants, HELF transfected with antisense cyclin D1 and antisense CDK4, were established. Cells were cultured and pretreated with vitamin C before stimulation with B[a]P for 24 h. The expression levels of cyclin DI, CDK4, E2FI, and E2F4 were determined by Western blot. Flow cytometric analysis was employed to detect the distributions of cell cycle. Results B[a]P significantly elevated the expression levels of cyclin D 1, E2F1, and E2F4 in HELF cells. Vitamin C decreased the expression levels of cyclin D 1, E2F1, and E2F4 in B [a]P-stimulated HELF cells. Dose-dependent relationships were not found between the different concentrations of vitamin C (10, 100, 500, 1000, and 5000 lamol/L) and the expression levels of cyclin D 1, E2F1, and E2F4 in HELF cells. The expression levels of cyclin D1, E2FI, and E2F4 in B[a]P-treated transfectants were lower than those in B[a]P-treated HELF cells. The expression levels of cyclin DI and E2F4 treated with vitamin C and antisense cyclin D1 were decreased compared with those treated with antisense cyclin DI alone. The effects of vitamin C combined with antisense CDK4 on the expression levels of cyclin DI and E2FI/E2F4 were similar to those of antisense CDK4 alone. B[a]P progressed HELF cells from GI to S phase. Both vitamin C and antisense cyclin DI suppressed the changes of cell cycle progressed by B[a]P. However, antisense CDK4 did not attenuate the above changes. Vitamin C combined with antisense CDK4 markedly suppressed B[a]P-induced changes of cell cycle as compared with antisense CDK4. But the inhibitory effects of vitamin C combined with antisense cyclin DI on B[a]P-induced changes of cell cycle were similar to those of vitamin C alone or antisense cyclin DI alone. Conclusions B[a]P progressed HELF cells from G1 to S phase via intracellular signaling pathway of cyclin D I/E2F. Vitamin C may modulate this signaling pathway to protect cells from injury caused by B[a]P. 展开更多
关键词 B[a]P Ascorbic acid cyclin D1 E2F Cell cycle ANTISENSE
暂未订购
上一页 1 2 85 下一页 到第
使用帮助 返回顶部