In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical ...In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems.展开更多
In this paper,we investigate the interfacial behavior of a thin,penny-shaped,one-dimensional(1D)hexagonal functionally graded(FG)piezoelectric quasicrystal(PQC)film bonded on a temperature-dependent elastic substrate ...In this paper,we investigate the interfacial behavior of a thin,penny-shaped,one-dimensional(1D)hexagonal functionally graded(FG)piezoelectric quasicrystal(PQC)film bonded on a temperature-dependent elastic substrate under thermal and electrical loads.The problem is modeled as axisymmetric based on the membrane theory,with the peeling stress and bending moment being disregarded.A potential theory method,combined with the Hankel transform technique,is utilized to derive the displacement field on the substrate surface.With perfect interfacial bonding assumption,an integral equation governing the phonon interfacial shear stress is formulated and numerically solved by the Chebyshev polynomials.Explicit expressions are derived for the interfacial shear stress,the internal stresses within the PQC film and the substrate,the axial strain,and the stress intensity factors(SIFs).Numerical simulations are conducted to investigate the effects of the film's aspect ratio,material inhomogeneity,material mismatch,and temperature-dependent material properties on its mechanical response.The results provide insights for the functional design and reliability assessment of FG PQC film/substrate systems.展开更多
基金Supported by the National Natural Science Foundation of China (Nos. 11902293 and 12272353)。
文摘In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems.
基金Project supported by the National Natural Science Foundation of China(Nos.11902293 and 12272353)。
文摘In this paper,we investigate the interfacial behavior of a thin,penny-shaped,one-dimensional(1D)hexagonal functionally graded(FG)piezoelectric quasicrystal(PQC)film bonded on a temperature-dependent elastic substrate under thermal and electrical loads.The problem is modeled as axisymmetric based on the membrane theory,with the peeling stress and bending moment being disregarded.A potential theory method,combined with the Hankel transform technique,is utilized to derive the displacement field on the substrate surface.With perfect interfacial bonding assumption,an integral equation governing the phonon interfacial shear stress is formulated and numerically solved by the Chebyshev polynomials.Explicit expressions are derived for the interfacial shear stress,the internal stresses within the PQC film and the substrate,the axial strain,and the stress intensity factors(SIFs).Numerical simulations are conducted to investigate the effects of the film's aspect ratio,material inhomogeneity,material mismatch,and temperature-dependent material properties on its mechanical response.The results provide insights for the functional design and reliability assessment of FG PQC film/substrate systems.