The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed t...The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed that CO interacted with lattice oxygen on the first layer formed CO_(2).However,when adsorbed on the second layer lattice oxygen,carbonate species were formed with the participation of first layer lattice oxygens,i.e.,CO co-adsorbed on first and second layer lattice oxygens.For the second layer adsorption,the absolute CO adsorption energy was big on the Oss nearby Cu.This kind of carbonates was thermodynamically stable,and it was attributed to the facilitation of Cu on CO adsorption,manifested by an electron migration behavior from the C 2p orbitals to the Cu 3d orbitals.However,the absolute CO adsorption energy on the Oss away from Cu was small.Compared to the formation of carbonates,the formation CO_(2)had very small absolute adsorption energy,suggesting the formed carbonates on second layer was stable.Further,when CO adsorbed on the systems with a carbonate,the absolute CO adsorption energy was significantly smaller than that of the non-carbonated system,indicating that the formation of carbonates inhibited CO oxidation on Cu/CeO_(2)(111).Therefore,the formation of carbonates was unfavorable for CO oxidation reaction on Cu/CeO_(2)(111).The results of this study provide theoretical support for the negative effect of CO_(2)on ceria-based catalysts.展开更多
卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率位居妇科肿瘤之首。肿瘤免疫微环境由肿瘤微环境内的免疫成分组成,这些成分与肿瘤的发展和转移密切相关。卵巢癌是免疫“冷肿瘤”,因为它能产生免疫抑制性的肿瘤免疫微环境。由于卵...卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率位居妇科肿瘤之首。肿瘤免疫微环境由肿瘤微环境内的免疫成分组成,这些成分与肿瘤的发展和转移密切相关。卵巢癌是免疫“冷肿瘤”,因为它能产生免疫抑制性的肿瘤免疫微环境。由于卵巢癌肿瘤免疫微环境的特点,免疫治疗对卵巢癌的疗效有限。具有序列相似性111的家族成员B(family with sequence similarity 111 member B,FAM111B)蛋白的表达与多种肿瘤的发生发展以及肿瘤免疫微环境有关,也与卵巢癌组织中程序性死亡配体-1(programmed death ligand-1,PD-L1)的表达有关。该文就FAM111B对卵巢癌肿瘤免疫微环境影响的相关研究进展作一综述。展开更多
采用密度泛函理论研究了M(M=In,Ir)原子修饰的M-Au(111)合金表面的稳定性,并选其最优模型探讨了合金表面的活性及其对巴豆醛的吸附。合金的几何构型、形成能和结合能等性质表明,In-Au(111)面的稳定性随In原子的间距增大而提高,Ir-Au(111...采用密度泛函理论研究了M(M=In,Ir)原子修饰的M-Au(111)合金表面的稳定性,并选其最优模型探讨了合金表面的活性及其对巴豆醛的吸附。合金的几何构型、形成能和结合能等性质表明,In-Au(111)面的稳定性随In原子的间距增大而提高,Ir-Au(111)面的稳定性随Ir原子的间距增大而降低。对于巴豆醛在MAu(111)面上的吸附,当其通过C=O吸附于合金表面的TopM位时,吸附能最大,吸附构型最稳定。从巴豆醛的结构变化、态密度、差分电荷密度以及Mulliken电荷布居等分析可以看出,稳定吸附构型的巴豆醛分子形变较大,电荷转移明显。其中,位于-7.04 e V至费米能级处的p、d轨道杂化,对体系的吸附具有重要贡献。分析比较In-Au(111)面与Ir-Au(111)面,发现后者的配体效应更佳,不仅具有更高的稳定性和活性,而且对于巴豆醛具有更强的吸附力。此外,相比于改性前的Au(111)面,M原子的修饰明显提升了金属表面的稳定性及吸附能力。展开更多
基金supported by National Natural Science Foundation of China(22379059)Applied Basic Research Program Project of Liaoning Province(2023JH2/101300224)+4 种基金Service Local Project of the Education Department of Liaoning Province(Enlisting and Leading)(LJKFZ20220201)General Project of the Educational Department of Liaoning Province(LJKMZ20220728)supported by Talent Scientific Research Fund of Liaoning Petrochemical University(2019-XJJL-028)Collaborative Innovation Project of Beijing-Tianjin-Hebei(Tianjin)(22PTXTHZ00020)Basic scientific research project of Liaoning Provincial Department of Education(LJ212410148019)。
文摘The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed that CO interacted with lattice oxygen on the first layer formed CO_(2).However,when adsorbed on the second layer lattice oxygen,carbonate species were formed with the participation of first layer lattice oxygens,i.e.,CO co-adsorbed on first and second layer lattice oxygens.For the second layer adsorption,the absolute CO adsorption energy was big on the Oss nearby Cu.This kind of carbonates was thermodynamically stable,and it was attributed to the facilitation of Cu on CO adsorption,manifested by an electron migration behavior from the C 2p orbitals to the Cu 3d orbitals.However,the absolute CO adsorption energy on the Oss away from Cu was small.Compared to the formation of carbonates,the formation CO_(2)had very small absolute adsorption energy,suggesting the formed carbonates on second layer was stable.Further,when CO adsorbed on the systems with a carbonate,the absolute CO adsorption energy was significantly smaller than that of the non-carbonated system,indicating that the formation of carbonates inhibited CO oxidation on Cu/CeO_(2)(111).Therefore,the formation of carbonates was unfavorable for CO oxidation reaction on Cu/CeO_(2)(111).The results of this study provide theoretical support for the negative effect of CO_(2)on ceria-based catalysts.
文摘卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率位居妇科肿瘤之首。肿瘤免疫微环境由肿瘤微环境内的免疫成分组成,这些成分与肿瘤的发展和转移密切相关。卵巢癌是免疫“冷肿瘤”,因为它能产生免疫抑制性的肿瘤免疫微环境。由于卵巢癌肿瘤免疫微环境的特点,免疫治疗对卵巢癌的疗效有限。具有序列相似性111的家族成员B(family with sequence similarity 111 member B,FAM111B)蛋白的表达与多种肿瘤的发生发展以及肿瘤免疫微环境有关,也与卵巢癌组织中程序性死亡配体-1(programmed death ligand-1,PD-L1)的表达有关。该文就FAM111B对卵巢癌肿瘤免疫微环境影响的相关研究进展作一综述。
文摘采用密度泛函理论研究了M(M=In,Ir)原子修饰的M-Au(111)合金表面的稳定性,并选其最优模型探讨了合金表面的活性及其对巴豆醛的吸附。合金的几何构型、形成能和结合能等性质表明,In-Au(111)面的稳定性随In原子的间距增大而提高,Ir-Au(111)面的稳定性随Ir原子的间距增大而降低。对于巴豆醛在MAu(111)面上的吸附,当其通过C=O吸附于合金表面的TopM位时,吸附能最大,吸附构型最稳定。从巴豆醛的结构变化、态密度、差分电荷密度以及Mulliken电荷布居等分析可以看出,稳定吸附构型的巴豆醛分子形变较大,电荷转移明显。其中,位于-7.04 e V至费米能级处的p、d轨道杂化,对体系的吸附具有重要贡献。分析比较In-Au(111)面与Ir-Au(111)面,发现后者的配体效应更佳,不仅具有更高的稳定性和活性,而且对于巴豆醛具有更强的吸附力。此外,相比于改性前的Au(111)面,M原子的修饰明显提升了金属表面的稳定性及吸附能力。