The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed t...The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed that CO interacted with lattice oxygen on the first layer formed CO_(2).However,when adsorbed on the second layer lattice oxygen,carbonate species were formed with the participation of first layer lattice oxygens,i.e.,CO co-adsorbed on first and second layer lattice oxygens.For the second layer adsorption,the absolute CO adsorption energy was big on the Oss nearby Cu.This kind of carbonates was thermodynamically stable,and it was attributed to the facilitation of Cu on CO adsorption,manifested by an electron migration behavior from the C 2p orbitals to the Cu 3d orbitals.However,the absolute CO adsorption energy on the Oss away from Cu was small.Compared to the formation of carbonates,the formation CO_(2)had very small absolute adsorption energy,suggesting the formed carbonates on second layer was stable.Further,when CO adsorbed on the systems with a carbonate,the absolute CO adsorption energy was significantly smaller than that of the non-carbonated system,indicating that the formation of carbonates inhibited CO oxidation on Cu/CeO_(2)(111).Therefore,the formation of carbonates was unfavorable for CO oxidation reaction on Cu/CeO_(2)(111).The results of this study provide theoretical support for the negative effect of CO_(2)on ceria-based catalysts.展开更多
卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率位居妇科肿瘤之首。肿瘤免疫微环境由肿瘤微环境内的免疫成分组成,这些成分与肿瘤的发展和转移密切相关。卵巢癌是免疫“冷肿瘤”,因为它能产生免疫抑制性的肿瘤免疫微环境。由于卵...卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率位居妇科肿瘤之首。肿瘤免疫微环境由肿瘤微环境内的免疫成分组成,这些成分与肿瘤的发展和转移密切相关。卵巢癌是免疫“冷肿瘤”,因为它能产生免疫抑制性的肿瘤免疫微环境。由于卵巢癌肿瘤免疫微环境的特点,免疫治疗对卵巢癌的疗效有限。具有序列相似性111的家族成员B(family with sequence similarity 111 member B,FAM111B)蛋白的表达与多种肿瘤的发生发展以及肿瘤免疫微环境有关,也与卵巢癌组织中程序性死亡配体-1(programmed death ligand-1,PD-L1)的表达有关。该文就FAM111B对卵巢癌肿瘤免疫微环境影响的相关研究进展作一综述。展开更多
This study explores the adsorption and reac-tion of methanol on the CeO_(2)(111)and Ni/CeO_(2)(111)surfaces,highlighting the es-sential role of metal-support interaction in methanol decomposition by a synergistic ap-p...This study explores the adsorption and reac-tion of methanol on the CeO_(2)(111)and Ni/CeO_(2)(111)surfaces,highlighting the es-sential role of metal-support interaction in methanol decomposition by a synergistic ap-proach encompassing synchrotron radiation photoemission spectroscopy,X-ray photo-electron spectroscopy,infrared reflection and absorption spectroscopy,and temperature-programmed desorption.Our findings reveal that Ni deposited on the CeO_(2)(111)surface,followed by annealing to 700 K,leads to the formation of Ce-O-Ni mixed oxide as the dominant phase.The Ni^(2+)species facilitate the methoxy decomposition into CO and H_(2)within 300-430 K,with a small amount of formalde-hyde also forming at the edge sites of ceria.Additionally,some methoxy adsorbed on the bare CeO_(2)surface migrates to the Ce-O-Ni mixed oxide,where they decompose into CO and H_(2)at 500-600 K,accompanied by a portion of the methoxy interacting with ceria to generate formaldehyde.Upon exposure to methanol at 500 K,the Ni^(2+)species are reduced to metallic Ni^(0),alongside the formation of coke and Ni_(3)C,ultimately resulting in catalyst deactivation.However,reintroducing O_(2)reactivates these sites by oxidizing metallic Ni^(0)and Ni_(3)C species.This study highlights the pivotal role of metal-support interaction in promoting oxygen trans-fer from ceria to Ni,thereby enhancing methoxy decomposition and significantly improving the performance of Ni-based catalysts for methanol decomposition into CO and H_(2).展开更多
Phosphoric acid/phosphate solu-tions are commonly used as buffer solutions in the fundamental stud-ies in electrochemistry.Informa-tion on the nature of adsorbed(bi)phosphate as well as the do-main structures is of gr...Phosphoric acid/phosphate solu-tions are commonly used as buffer solutions in the fundamental stud-ies in electrochemistry.Informa-tion on the nature of adsorbed(bi)phosphate as well as the do-main structures is of great impor-tance in unveiling the impact on electrochemical processes occur-ring at electrode electrolyte interface.In this work,the pH effect on the adsorption of phosphate related species on Pd(111)electrode has been investigated by cyclic voltammetry over a broad pH range from 1 to 14.Af-ter carefully analyzing the related onset desorption potential of(bi)phosphate adsorbate to the thermodynamic equilibrium potential of the corresponding electrode reactions,three dif-ferent phosphate related adsorbates have been identified,which are highly pH-dependent.Our analysis reveals that the dominant phosphate anions in bulk solution undergo deprotona-tion upon adsorption.At pH<1.5,the main adsorbate on Pd(111)is;H_(2)PO_(4)^(λ_(1)^(-))in solutions with 1.5<pH<7,the main adsorbate changes into.HPO_(4)^(λ_2^(-))At higher pHs,PO_(4)^(λ_(3)^(-))on electrode surface dominates.The exact charging value ofλ_(i),which represents the true va-lence of the(bi)phosphate adsorbate,could be determined using theoretical calculations.In addition,our results can not rule out the possibility of co-adsorbed H_(3)PO_(4)molecules on Pd(111)at pH<1.5,which needs to be proved by infrared spectroscopy in the future.展开更多
基金supported by National Natural Science Foundation of China(22379059)Applied Basic Research Program Project of Liaoning Province(2023JH2/101300224)+4 种基金Service Local Project of the Education Department of Liaoning Province(Enlisting and Leading)(LJKFZ20220201)General Project of the Educational Department of Liaoning Province(LJKMZ20220728)supported by Talent Scientific Research Fund of Liaoning Petrochemical University(2019-XJJL-028)Collaborative Innovation Project of Beijing-Tianjin-Hebei(Tianjin)(22PTXTHZ00020)Basic scientific research project of Liaoning Provincial Department of Education(LJ212410148019)。
文摘The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed that CO interacted with lattice oxygen on the first layer formed CO_(2).However,when adsorbed on the second layer lattice oxygen,carbonate species were formed with the participation of first layer lattice oxygens,i.e.,CO co-adsorbed on first and second layer lattice oxygens.For the second layer adsorption,the absolute CO adsorption energy was big on the Oss nearby Cu.This kind of carbonates was thermodynamically stable,and it was attributed to the facilitation of Cu on CO adsorption,manifested by an electron migration behavior from the C 2p orbitals to the Cu 3d orbitals.However,the absolute CO adsorption energy on the Oss away from Cu was small.Compared to the formation of carbonates,the formation CO_(2)had very small absolute adsorption energy,suggesting the formed carbonates on second layer was stable.Further,when CO adsorbed on the systems with a carbonate,the absolute CO adsorption energy was significantly smaller than that of the non-carbonated system,indicating that the formation of carbonates inhibited CO oxidation on Cu/CeO_(2)(111).Therefore,the formation of carbonates was unfavorable for CO oxidation reaction on Cu/CeO_(2)(111).The results of this study provide theoretical support for the negative effect of CO_(2)on ceria-based catalysts.
文摘卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率位居妇科肿瘤之首。肿瘤免疫微环境由肿瘤微环境内的免疫成分组成,这些成分与肿瘤的发展和转移密切相关。卵巢癌是免疫“冷肿瘤”,因为它能产生免疫抑制性的肿瘤免疫微环境。由于卵巢癌肿瘤免疫微环境的特点,免疫治疗对卵巢癌的疗效有限。具有序列相似性111的家族成员B(family with sequence similarity 111 member B,FAM111B)蛋白的表达与多种肿瘤的发生发展以及肿瘤免疫微环境有关,也与卵巢癌组织中程序性死亡配体-1(programmed death ligand-1,PD-L1)的表达有关。该文就FAM111B对卵巢癌肿瘤免疫微环境影响的相关研究进展作一综述。
基金financially supported by the National Key R&D Program of China(2023YFA1509103)the National Natural Science Foundation of China(Nos.22272157,21872131,22106085,and U1932214)。
文摘This study explores the adsorption and reac-tion of methanol on the CeO_(2)(111)and Ni/CeO_(2)(111)surfaces,highlighting the es-sential role of metal-support interaction in methanol decomposition by a synergistic ap-proach encompassing synchrotron radiation photoemission spectroscopy,X-ray photo-electron spectroscopy,infrared reflection and absorption spectroscopy,and temperature-programmed desorption.Our findings reveal that Ni deposited on the CeO_(2)(111)surface,followed by annealing to 700 K,leads to the formation of Ce-O-Ni mixed oxide as the dominant phase.The Ni^(2+)species facilitate the methoxy decomposition into CO and H_(2)within 300-430 K,with a small amount of formalde-hyde also forming at the edge sites of ceria.Additionally,some methoxy adsorbed on the bare CeO_(2)surface migrates to the Ce-O-Ni mixed oxide,where they decompose into CO and H_(2)at 500-600 K,accompanied by a portion of the methoxy interacting with ceria to generate formaldehyde.Upon exposure to methanol at 500 K,the Ni^(2+)species are reduced to metallic Ni^(0),alongside the formation of coke and Ni_(3)C,ultimately resulting in catalyst deactivation.However,reintroducing O_(2)reactivates these sites by oxidizing metallic Ni^(0)and Ni_(3)C species.This study highlights the pivotal role of metal-support interaction in promoting oxygen trans-fer from ceria to Ni,thereby enhancing methoxy decomposition and significantly improving the performance of Ni-based catalysts for methanol decomposition into CO and H_(2).
基金supported by the National Natural Science Foundation of China(No.22172151)。
文摘Phosphoric acid/phosphate solu-tions are commonly used as buffer solutions in the fundamental stud-ies in electrochemistry.Informa-tion on the nature of adsorbed(bi)phosphate as well as the do-main structures is of great impor-tance in unveiling the impact on electrochemical processes occur-ring at electrode electrolyte interface.In this work,the pH effect on the adsorption of phosphate related species on Pd(111)electrode has been investigated by cyclic voltammetry over a broad pH range from 1 to 14.Af-ter carefully analyzing the related onset desorption potential of(bi)phosphate adsorbate to the thermodynamic equilibrium potential of the corresponding electrode reactions,three dif-ferent phosphate related adsorbates have been identified,which are highly pH-dependent.Our analysis reveals that the dominant phosphate anions in bulk solution undergo deprotona-tion upon adsorption.At pH<1.5,the main adsorbate on Pd(111)is;H_(2)PO_(4)^(λ_(1)^(-))in solutions with 1.5<pH<7,the main adsorbate changes into.HPO_(4)^(λ_2^(-))At higher pHs,PO_(4)^(λ_(3)^(-))on electrode surface dominates.The exact charging value ofλ_(i),which represents the true va-lence of the(bi)phosphate adsorbate,could be determined using theoretical calculations.In addition,our results can not rule out the possibility of co-adsorbed H_(3)PO_(4)molecules on Pd(111)at pH<1.5,which needs to be proved by infrared spectroscopy in the future.