A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality...A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality factor for the matching circuits. Moreover, CCS-TL based Marchand balun was implemented to achieve higher output power. The measured small signal gain was higher than 5 d B from 101 GHz to 110 GHz. DC power consumption was 67.2 mW with V_D=1.2 V, and the chip size including contact PADs was 1.12 mm×0.81 mm.展开更多
Electro-optic modulation at frequencies of 100 GHz and beyond is important for photonic-electronic signal processing at the highest speeds.To date,however,only a small number of devices exist that can operate up to th...Electro-optic modulation at frequencies of 100 GHz and beyond is important for photonic-electronic signal processing at the highest speeds.To date,however,only a small number of devices exist that can operate up to this frequency.In this study,we demonstrate that this frequency range can be addressed by nanophotonic,silicon-based modulators.We exploit the ultrafast Pockels effect by using the silicon–organic hybrid(SOH)platform,which combines highly nonlinear organic molecules with silicon waveguides.Until now,the bandwidth of these devices was limited by the losses of the radiofrequency(RF)signal and the RC(resistor-capacitor)time constant of the silicon structure.The RF losses are overcome by using a device as short as 500 μm,and the RC time constant is decreased by using a highly conductive electron accumulation layer and an improved gate insulator.Using this method,we demonstrate for the first time an integrated silicon modulator with a 3dB bandwidth at an operating frequency beyond 100 GHz.Our results clearly indicate that the RC time constant is not a fundamental speed limitation of SOH devices at these frequencies.Our device has a voltage–length product of only V_(π)L=11 V mm,which compares favorably with the best silicon-photonic modulators available today.Using cladding materials with stronger nonlinearities,the voltage–length product is expected to improve by more than an order of magnitude.展开更多
A tunable two-section amplified feedback laser, which employs an amplifier section as the integrated feedback cavity, is designed and fabricated for dual-mode operation with mode separation of 100 GHz. Detailed simula...A tunable two-section amplified feedback laser, which employs an amplifier section as the integrated feedback cavity, is designed and fabricated for dual-mode operation with mode separation of 100 GHz. Detailed simulations and experimental characterizations on the performance of the laser are presented. Promising dual-mode emission with continuous tuning range over 16 GHz(87.41–103.64 GHz) is experimentally demonstrated.展开更多
基金Supported by the National High Technology Research and Development Program of China(“863”ProgramNo.2015AA01A703)
文摘A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality factor for the matching circuits. Moreover, CCS-TL based Marchand balun was implemented to achieve higher output power. The measured small signal gain was higher than 5 d B from 101 GHz to 110 GHz. DC power consumption was 67.2 mW with V_D=1.2 V, and the chip size including contact PADs was 1.12 mm×0.81 mm.
基金We acknowledge support by the DFG Center for Functional Nanostructuresthe Helmholtz International Research School of Teratronics+3 种基金the Karlsruhe School of Optics and Photonicsthe EU-FP7 projects SOFI(grant 248609)and EURO-FOS(grant 224402)the BMBF joint project MISTRAL,which is funded by the German Ministry of Education and Research under grant 01BL0804and the European Research Council(ERC Starting Grant‘EnTeraPIC’,number 280145).
文摘Electro-optic modulation at frequencies of 100 GHz and beyond is important for photonic-electronic signal processing at the highest speeds.To date,however,only a small number of devices exist that can operate up to this frequency.In this study,we demonstrate that this frequency range can be addressed by nanophotonic,silicon-based modulators.We exploit the ultrafast Pockels effect by using the silicon–organic hybrid(SOH)platform,which combines highly nonlinear organic molecules with silicon waveguides.Until now,the bandwidth of these devices was limited by the losses of the radiofrequency(RF)signal and the RC(resistor-capacitor)time constant of the silicon structure.The RF losses are overcome by using a device as short as 500 μm,and the RC time constant is decreased by using a highly conductive electron accumulation layer and an improved gate insulator.Using this method,we demonstrate for the first time an integrated silicon modulator with a 3dB bandwidth at an operating frequency beyond 100 GHz.Our results clearly indicate that the RC time constant is not a fundamental speed limitation of SOH devices at these frequencies.Our device has a voltage–length product of only V_(π)L=11 V mm,which compares favorably with the best silicon-photonic modulators available today.Using cladding materials with stronger nonlinearities,the voltage–length product is expected to improve by more than an order of magnitude.
基金supported in part by the National 973 Project of China(No.2011CB301702)the National 863 Project of China(No.2013AA014202)the National Natural Science Foundation of China(Nos.61201103,61335009,61274045,and 61205031)
文摘A tunable two-section amplified feedback laser, which employs an amplifier section as the integrated feedback cavity, is designed and fabricated for dual-mode operation with mode separation of 100 GHz. Detailed simulations and experimental characterizations on the performance of the laser are presented. Promising dual-mode emission with continuous tuning range over 16 GHz(87.41–103.64 GHz) is experimentally demonstrated.