Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still...Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specifcity of prostate-specifc antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modifcation critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phos-phatase, whose specifcity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identifed as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.展开更多
OBJECTIVE:To investigate the mechanism of Dan Ze mixture(丹泽合剂,DZM)in the treatment of lipotoxic cardiomyopathy.METHODS:Ultra-performance liquid chromatography tandem mass spectrometry was employed to characterize ...OBJECTIVE:To investigate the mechanism of Dan Ze mixture(丹泽合剂,DZM)in the treatment of lipotoxic cardiomyopathy.METHODS:Ultra-performance liquid chromatography tandem mass spectrometry was employed to characterize the serum migration constituents of DZM.A lipotoxic cardiomyopathy rat model was established through high-fat diet and intervened by different doses of DZM.The cardiac function was assessed using echocardiography,and hematoxylin and eosin,oil red O,and Masson staining were conducted to evaluate morphological changes,lipid accumulation,and fibrosis in myocardial tissue.Serum myocardial enzyme activity,lipid levels,and lipid content of myocardial tissue were measured,while fluorescent staining and colorimetry were used to assess oxidation levels in myocardial tissue.Mitochondrial membrane potential was detected by 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanineiodide(JC-1).Transmission electron microscopy was employed to observe ultrastructure and mitochondrial structure changes in myocardial tissue.Fluorescence double staining and colocalization were utilized to observe the binding of autophagosomes and mitochondria,while immunohistochemical staining was used to detect the expression of mitophagy-related proteins.Terminal deoxynucleoitidyl transferase mediated nick end labeling staining was employed for the identification of apoptosis in myocardial tissue,while quantitative real-time reverse transcriptase polymerase chain reaction(q RT-PCR)and Western blot were utilized for the detection of apoptosis,B-cell lymphoma-2 adenovirus E1B 19 k Da-interacting protein 3(BNIP3)/mitophagy signaling pathway-related genes and proteins.In palmitic acid-induced Rat H9C2 cardiomyocytes(H9c2)cells,various cellular parameters including cell viability,lactate dehydrogenase release,apoptosis rate,oxidative stress level,mitochondrial structure and function,and mitophagy level were assessed after the treatment of DZM drug-containing serum for a duration of 24 h.The cellular expressions of BNIP3/mitophagy signaling pathway relevant genes and proteins were further evaluated using q RT-PCR and Western blot techniques.RESULTS:A total of 295 prototypes(e.g.,phenolic acids,quinones,terpenoids)were identified in serum of rats after oral administration of DZM.In vivo,DZM therapy has been shown to effectively enhance cardiac function,mitigate high-fat diet-induced myocardial structural damage and lipid accumulation.Furthermore,DZM has demonstrated the ability to reduce lipid levels,attenuate cell apoptosis,combat oxidative stress,enhance mitochondrial structure and function,and activate the BNIP3/mitophagy signaling pathway.Furthermore,the silencing of BNIP3 has been shown to exacerbate palmitic acid-induced damages in H9c2 cells,while inhibiting the BNIP3/mitophagy signaling pathway can mitigate the inhibitory effects of DZM on palmitic acidinduced apoptosis,lipid deposition and oxidative stress.CONCLUSION:This study presents preliminary evidence for the therapeutic efficacy of DZM on lipotoxic cardiomyopathy through the activating BNIP3/mitophagy signaling pathway.展开更多
SubclassⅢsucrose nonfermenting1-related protein kinase 2s(SnRK2s)function in ABA and abiotic stress responses by unknown mechanisms.We found that osmotic stress/ABA-activated protein kinase 10(SAPK10),a member of ric...SubclassⅢsucrose nonfermenting1-related protein kinase 2s(SnRK2s)function in ABA and abiotic stress responses by unknown mechanisms.We found that osmotic stress/ABA-activated protein kinase 10(SAPK10),a member of rice SnRK2s,physically interacted with CBL-interacting protein kinase 1(OsCIPK1).OsCIPK1 expression was up-regulated by ABA and PEG treatment,and overexpression increased the ABA sensitivity of seed germination and root growth and plant osmotic stress tolerance.Osmotic stress or ABA-induced activation of OsCIPK1 is dependent on SAPK10.SAPK10 phosphorylates Thr-24 of OsCIPK1 in vitro,and this phosphorylation increases the activity of OsCIPK1 and positively regulates the function of OsCIPK1 in ABA responses and plant osmotic stress tolerance.This study suggests that OsCIPK1 is a direct phosphorylated substrate of SAPK10,and SAPK10-mediated phosphorylation of OsCIPK1 functions in ABA signaling and increases rice osmotic stress tolerance.展开更多
基金Supported by Fundao para a Ciência e Tecnologia(FCT)(PTDC/QUI-BIQ/118492/2010)Fundo Europeu de Desenvolvimento Regional(FEDER)(FCOMP-01-0124-FEDER-020895),Portugal
文摘Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specifcity of prostate-specifc antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modifcation critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phos-phatase, whose specifcity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identifed as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
基金Scientific Research Project of Hebei Province Administration of Traditional Chinese Medicine:to Explore the Protective Effect and Mechanism of Zexie Decoction on Lipotoxic Cardiomyopathy based on the p-mitogen-activated protein kinases/Peroxisome proliferator-activated receptorγcoactivator 1-alpha(p MAPK/PGC-1α)Signaling Pathway(No.2022096)Medical Science Research Project of Hebei Province:the Effect of 23-acetyl Alismol-B on Mitochondrial Function in Palmitic Acid-induced H9c2 Cells Was Investigated based on the Ca2+-Cyclic Adenosine Monophosphate(c AMP)-Response Element Binding Protein/c AMP Response Element(CREB/CRE)-PGC-1αSignaling Pathway(No.20221490)+1 种基金Hebei province natural science fund project:Study on the Mechanism of Danshen Zexie Decoction in Activating Nuclear Factor Erythroid 2-related Factor 2 Signaling Pathway to Trigger 0mi/Htr A2,Restoring Autophagic Flux and Enhancing Metabolism-Related Fatty Liver Disease(No.H2023423064)Hebei graduate student innovation ability funding training project:to Investigate the Protective Effects and Underlying Mechanisms of Zexie Decoction on Lipotoxic Cardiomyopathy,with A Focus on the PGC-1a Signaling Pathway(No.CXZZBS2022096)。
文摘OBJECTIVE:To investigate the mechanism of Dan Ze mixture(丹泽合剂,DZM)in the treatment of lipotoxic cardiomyopathy.METHODS:Ultra-performance liquid chromatography tandem mass spectrometry was employed to characterize the serum migration constituents of DZM.A lipotoxic cardiomyopathy rat model was established through high-fat diet and intervened by different doses of DZM.The cardiac function was assessed using echocardiography,and hematoxylin and eosin,oil red O,and Masson staining were conducted to evaluate morphological changes,lipid accumulation,and fibrosis in myocardial tissue.Serum myocardial enzyme activity,lipid levels,and lipid content of myocardial tissue were measured,while fluorescent staining and colorimetry were used to assess oxidation levels in myocardial tissue.Mitochondrial membrane potential was detected by 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanineiodide(JC-1).Transmission electron microscopy was employed to observe ultrastructure and mitochondrial structure changes in myocardial tissue.Fluorescence double staining and colocalization were utilized to observe the binding of autophagosomes and mitochondria,while immunohistochemical staining was used to detect the expression of mitophagy-related proteins.Terminal deoxynucleoitidyl transferase mediated nick end labeling staining was employed for the identification of apoptosis in myocardial tissue,while quantitative real-time reverse transcriptase polymerase chain reaction(q RT-PCR)and Western blot were utilized for the detection of apoptosis,B-cell lymphoma-2 adenovirus E1B 19 k Da-interacting protein 3(BNIP3)/mitophagy signaling pathway-related genes and proteins.In palmitic acid-induced Rat H9C2 cardiomyocytes(H9c2)cells,various cellular parameters including cell viability,lactate dehydrogenase release,apoptosis rate,oxidative stress level,mitochondrial structure and function,and mitophagy level were assessed after the treatment of DZM drug-containing serum for a duration of 24 h.The cellular expressions of BNIP3/mitophagy signaling pathway relevant genes and proteins were further evaluated using q RT-PCR and Western blot techniques.RESULTS:A total of 295 prototypes(e.g.,phenolic acids,quinones,terpenoids)were identified in serum of rats after oral administration of DZM.In vivo,DZM therapy has been shown to effectively enhance cardiac function,mitigate high-fat diet-induced myocardial structural damage and lipid accumulation.Furthermore,DZM has demonstrated the ability to reduce lipid levels,attenuate cell apoptosis,combat oxidative stress,enhance mitochondrial structure and function,and activate the BNIP3/mitophagy signaling pathway.Furthermore,the silencing of BNIP3 has been shown to exacerbate palmitic acid-induced damages in H9c2 cells,while inhibiting the BNIP3/mitophagy signaling pathway can mitigate the inhibitory effects of DZM on palmitic acidinduced apoptosis,lipid deposition and oxidative stress.CONCLUSION:This study presents preliminary evidence for the therapeutic efficacy of DZM on lipotoxic cardiomyopathy through the activating BNIP3/mitophagy signaling pathway.
基金supported by grants from the National Natural Science Foundation of China(31971824,32170316)。
文摘SubclassⅢsucrose nonfermenting1-related protein kinase 2s(SnRK2s)function in ABA and abiotic stress responses by unknown mechanisms.We found that osmotic stress/ABA-activated protein kinase 10(SAPK10),a member of rice SnRK2s,physically interacted with CBL-interacting protein kinase 1(OsCIPK1).OsCIPK1 expression was up-regulated by ABA and PEG treatment,and overexpression increased the ABA sensitivity of seed germination and root growth and plant osmotic stress tolerance.Osmotic stress or ABA-induced activation of OsCIPK1 is dependent on SAPK10.SAPK10 phosphorylates Thr-24 of OsCIPK1 in vitro,and this phosphorylation increases the activity of OsCIPK1 and positively regulates the function of OsCIPK1 in ABA responses and plant osmotic stress tolerance.This study suggests that OsCIPK1 is a direct phosphorylated substrate of SAPK10,and SAPK10-mediated phosphorylation of OsCIPK1 functions in ABA signaling and increases rice osmotic stress tolerance.