In this paper,the shadowing property for 1-dimensional subsystems of Z^(k)-actions is investigated.The concepts of pseudo orbit and shadowing property for 1-dimensional subsystems of Z^(k)-actions are introduced in tw...In this paper,the shadowing property for 1-dimensional subsystems of Z^(k)-actions is investigated.The concepts of pseudo orbit and shadowing property for 1-dimensional subsystems of Z^(k)-actions are introduced in two equivalent ways.For a smooth Z^(k)-action T on a closed Riemannian manifold,we propose a notion of Anosov direction via the induced nonautonomous dynamical system.Adapting Bowen’s geometric method to our case,we show that T has the Lipschitz shadowing property along any Anosov direction.展开更多
The interplay of crystal electric field,temperature,and spin–orbit coupling can yield a Kramer ion and thus an effective S=1/2 ground state for Co^(2+)ions(3d^(7)),which is often the case for low-dimensional material...The interplay of crystal electric field,temperature,and spin–orbit coupling can yield a Kramer ion and thus an effective S=1/2 ground state for Co^(2+)ions(3d^(7)),which is often the case for low-dimensional materials.This is because a highly anisotropic structural motif can force the spins to point either“up”or“down,”thereby creating a system where spins communicate via Ising interactions.Cobalt-based quasi-1-dimensional materials have been studied in this context since the latter half of the 20th century.However,due to the development of modern characterization techniques and advances in sample preparation,the exotic physical phenomena that have generated the most interest have only emerged in the past three to four decades.This topical review mainly summarizes progress in cobalt-based quasi-1-dimensional quantum magnets and comments on a few research directions of potential future interest.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilin...In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equatio...Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.展开更多
In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’...In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’s function of its Lax representation.Based on solving the ■ equation and choosing the proper spectral transformation,the solution of the DJKM equation is constructed.Furthermore,the more general solution of the DJKM equation can be also obtained by ensuring the evolution of the time spectral data.展开更多
A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlev...A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlevéexpansion method.Subsequently,the residue symmetry is localized to a Lie point symmetry of a prolonged system,from which the finite transformation group is derived.Secondly,the integrability of the 2DmKdV system is examined under the sense of consistent tanh expansion solvability.Simultaneously,explicit soliton-cnoidal wave solutions are provided.Finally,abundant patterns of soliton molecules are presented by imposing the velocity resonance condition on the multiple-soliton solution.展开更多
In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to deri...In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By usin...In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.展开更多
Considering the importance of higher-dimensional equations that are widely applied to real nonlinear problems,many(4+1)-dimensional integrable systems have been established by uplifting the dimensions of their corresp...Considering the importance of higher-dimensional equations that are widely applied to real nonlinear problems,many(4+1)-dimensional integrable systems have been established by uplifting the dimensions of their corresponding lower-dimensional integrable equations.Recently,an integrable(4+1)-dimensional extension of the Boiti-Leon-Manna-Pempinelli(4DBLMP)equation has been proposed,which can also be considered as an extension of the famous Korteweg-de Vries equation that is applicable in fluids,plasma physics and so on.It is shown that new higher-dimensional variable separation solutions with several arbitrary lowerdimensional functions can also be obtained using the multilinear variable separation approach for the 4DBLMP equation.In addition,by taking advantage of the explicit expressions of the new solutions,versatile(4+1)-dimensional nonlinear wave excitations can be designed.As an illustration,periodic breathing lumps,multi-dromion-ring-type instantons,and hybrid waves on a doubly periodic wave background are discovered to reveal abundant nonlinear structures and dynamics in higher dimensions.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
The(2 + 1)-dimensional generalized fifth-order Kd V(2GKd V) equation is revisited via combined physical and mathematical methods. By using the Hirota perturbation expansion technique and via setting the nonzero backgr...The(2 + 1)-dimensional generalized fifth-order Kd V(2GKd V) equation is revisited via combined physical and mathematical methods. By using the Hirota perturbation expansion technique and via setting the nonzero background wave on the multiple soliton solution of the 2GKd V equation, breather waves are constructed, for which some transformed wave conditions are considered that yield abundant novel nonlinear waves including X/Y-Shaped(XS/YS),asymmetric M-Shaped(MS), W-Shaped(WS), Space-Curved(SC) and Oscillation M-Shaped(OMS) solitons. Furthermore, distinct nonlinear wave molecules and interactional structures involving the asymmetric MS, WS, XS/YS, SC solitons, and breathers, lumps are constructed after considering the corresponding existence conditions. The dynamical properties of the nonlinear molecular waves and interactional structures are revealed via analyzing the trajectory equations along with the change of the phase shifts.展开更多
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre...This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.展开更多
The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.I...The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.In this study,the problem was solved by introducing an innovative 2.5-dimensional(2.5D)Voronoi numerical simulation method,dividing rock layers into 2.5D Voronoi blocks and developing cohesive element-based failure models,supported by a strain-softening HoekeBrown model.The method was applied to the 8311 working face in the Taishan Mine in China,and its accuracy was confirmed through physical experiments.The following conclusions were drawn.The first roof break typically followed an"O-X"pattern.The direct roof did not break randomly over time;instead,it followed three distinct scenarios:(1)A complete break of the direct roof occurred,followed by a sequential collapse(ScenarioⅠ).(2)Regional irregular stacking in one area was followed by sequential collapse in other zones(ScenarioⅡ).(3)The staged breakdown of the direct roof led to separate and sequential collapses on the left and right flanks(ScenarioⅢ).Scenario I was quite common during the 400 m advance of the working face and occurred five times.The fracture characteristics in Scenario I led to widespread pressure on the hydraulic supports in the middle of the working face.Finally,the direct roof from the working face towards the goaf area underwent phases of overhanging,hinging,and collapsing plates.After the first and periodic breaks,the basic roof formed stable hinged plate structures reinforced by overhanging plates and irregular accumulations of the direct roof.展开更多
We consider the Hyperverse as a collection of multiverses in a (4 + 1)-dimensional spacetime with gravitational constant G. Multiverses in our model are bouquets of thin shells (with synchronized intrinsic times). If ...We consider the Hyperverse as a collection of multiverses in a (4 + 1)-dimensional spacetime with gravitational constant G. Multiverses in our model are bouquets of thin shells (with synchronized intrinsic times). If gis the gravitational constant of a shell Sand εits thickness, then G~εg. The physical universe is supposed to be one of those thin shells inside the local bouquet called Local Multiverse. Other remarkable objects of the Hyperverse are supposed to be black holes, black lenses, black rings and (generalized) Black Saturns. In addition, Schwarzschild-de Sitter multiversal nurseries can be hidden inside those Black Saturns, leading to their Bousso-Hawking nucleation. It also suggests that black holes in our physical universe might harbor embedded (2 + 1)-dimensional multiverses. This is compatible with outstanding ideas and results of Bekenstein, Hawking-Vaz and Corda about “black holes as atoms” and the condensation of matter on “apparent horizons”. It allows us to formulate conjecture 12.1 about the origin of the Local Multiverse. As an alternative model, we examine spacetime warping of our universe by external universes. It gives data for the accelerated expansion and the cosmological constant Λ, which are in agreement with observation, thus opening a possibility for verification of the multiverse model.展开更多
ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lew...ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lewy (CFL) coefficient. Toro and Titarev employed CCFL=0.95for their experiments. Nonetheless, we noted that the experiments conducted in this study with CCFL=0.95produced solutions exhibiting spurious oscillations, particularly in the high-order ADER-WAF schemes. The homogeneous one-dimensional (1D) non-linear Shallow Water Equations (SWEs) are the subject of these experiments, specifically the solution of the Riemann Problem (RP) associated with the SWEs. The investigation was conducted on four test problems to evaluate the ADER-WAF schemes of second, third, fourth, and fifth order of accuracy. Each test problem constitutes a RP characterized by different wave patterns in its solution. This research has two primary objectives. We begin by illustrating the procedure for implementing the ADER-WAF schemes for the SWEs, providing the required relations. Afterward, following comprehensive testing, we present the range for the CFL coefficient for each test that yields solutions with diminished or eliminated spurious oscillations.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1177111811801336)+1 种基金the Applied Basic Research Program of Shanxi Province(Grant No.201901D211417)the Science and Technology Innovation Project of Shanxi Higher Education(Grant No.2019L0475).
文摘In this paper,the shadowing property for 1-dimensional subsystems of Z^(k)-actions is investigated.The concepts of pseudo orbit and shadowing property for 1-dimensional subsystems of Z^(k)-actions are introduced in two equivalent ways.For a smooth Z^(k)-action T on a closed Riemannian manifold,we propose a notion of Anosov direction via the induced nonautonomous dynamical system.Adapting Bowen’s geometric method to our case,we show that T has the Lipschitz shadowing property along any Anosov direction.
基金supported by the Start-up Research Fund of Southeast University(Grant No.RF1028624196)the Gordon and Betty Moore foundation,EPiQS initiative(Grant No.GBMF-9066)the Basic Sciences Division of the US Department of Energy(Grant No.DE-FG02-98ER45706)。
文摘The interplay of crystal electric field,temperature,and spin–orbit coupling can yield a Kramer ion and thus an effective S=1/2 ground state for Co^(2+)ions(3d^(7)),which is often the case for low-dimensional materials.This is because a highly anisotropic structural motif can force the spins to point either“up”or“down,”thereby creating a system where spins communicate via Ising interactions.Cobalt-based quasi-1-dimensional materials have been studied in this context since the latter half of the 20th century.However,due to the development of modern characterization techniques and advances in sample preparation,the exotic physical phenomena that have generated the most interest have only emerged in the past three to four decades.This topical review mainly summarizes progress in cobalt-based quasi-1-dimensional quantum magnets and comments on a few research directions of potential future interest.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
基金supported by the National Natural Science Foundation of China,Grant No.12375006。
文摘In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.
基金supported by National Natural Science Foundation of China under Grant Nos.12175111,11975131K C Wong Magna Fund in Ningbo University。
文摘In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’s function of its Lax representation.Based on solving the ■ equation and choosing the proper spectral transformation,the solution of the DJKM equation is constructed.Furthermore,the more general solution of the DJKM equation can be also obtained by ensuring the evolution of the time spectral data.
基金supported by the National Natural Science Foundation of China(No.12375006).
文摘A(2+1)-dimensional modified KdV(2DmKdV)system is considered from several perspectives.Firstly,residue symmetry,a type of nonlocal symmetry,and the Bäcklund transformation are obtained via the truncated Painlevéexpansion method.Subsequently,the residue symmetry is localized to a Lie point symmetry of a prolonged system,from which the finite transformation group is derived.Secondly,the integrability of the 2DmKdV system is examined under the sense of consistent tanh expansion solvability.Simultaneously,explicit soliton-cnoidal wave solutions are provided.Finally,abundant patterns of soliton molecules are presented by imposing the velocity resonance condition on the multiple-soliton solution.
基金supported by the National Natural Science Foundation of China(Nos.12101572,12371256)2023 Shanxi Province Graduate Innovation Project(No.2023KY614)the 19th Graduate Science and Technology Project of North University of China(No.20231943)。
文摘In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
基金supported by the National Natural Science Foundation of China (Grant No. 12 361 052)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2022ZD05)+2 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414)the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBTD007)the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), and the Ministry of Education (Grant Nos. 2023KFZR01, 2023KFZR02)
文摘In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.
基金supported by the National Natural Science Foundation of China (Grant Nos.12275085 and 12235007)the Science and Technology Commission of Shanghai Municipality (Grant No.22DZ2229014)。
文摘Considering the importance of higher-dimensional equations that are widely applied to real nonlinear problems,many(4+1)-dimensional integrable systems have been established by uplifting the dimensions of their corresponding lower-dimensional integrable equations.Recently,an integrable(4+1)-dimensional extension of the Boiti-Leon-Manna-Pempinelli(4DBLMP)equation has been proposed,which can also be considered as an extension of the famous Korteweg-de Vries equation that is applicable in fluids,plasma physics and so on.It is shown that new higher-dimensional variable separation solutions with several arbitrary lowerdimensional functions can also be obtained using the multilinear variable separation approach for the 4DBLMP equation.In addition,by taking advantage of the explicit expressions of the new solutions,versatile(4+1)-dimensional nonlinear wave excitations can be designed.As an illustration,periodic breathing lumps,multi-dromion-ring-type instantons,and hybrid waves on a doubly periodic wave background are discovered to reveal abundant nonlinear structures and dynamics in higher dimensions.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金provided by the National Natural Science Foundation of China (Grant No. 12271324)the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2024JC-YBQN-0069)+2 种基金the China Postdoctoral Science Foundation (Grant No. 2024M751921)the 2023 Shaanxi Province Postdoctoral Research Project (Grant No.2023BSHEDZZ186)the Fundamental Research Funds for the Central Universities (Grant No. 1301032598)。
文摘The(2 + 1)-dimensional generalized fifth-order Kd V(2GKd V) equation is revisited via combined physical and mathematical methods. By using the Hirota perturbation expansion technique and via setting the nonzero background wave on the multiple soliton solution of the 2GKd V equation, breather waves are constructed, for which some transformed wave conditions are considered that yield abundant novel nonlinear waves including X/Y-Shaped(XS/YS),asymmetric M-Shaped(MS), W-Shaped(WS), Space-Curved(SC) and Oscillation M-Shaped(OMS) solitons. Furthermore, distinct nonlinear wave molecules and interactional structures involving the asymmetric MS, WS, XS/YS, SC solitons, and breathers, lumps are constructed after considering the corresponding existence conditions. The dynamical properties of the nonlinear molecular waves and interactional structures are revealed via analyzing the trajectory equations along with the change of the phase shifts.
基金supported by the BK21 FOUR funded by the Ministry of Education of Korea and National Research Foundation of Korea,a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ICAN(ICT Challenge and Advanced Network of HRD)grant funded by the Korea government(Ministry of Science and ICT)(RS-2024-00438411).
文摘This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.
基金supported by the Autonomous General Projects of the State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,China(Grant No.2011DA105287-MS202209)the National Natural Science Foundation of China,China(Grant Nos.52304149 and 52204127).
文摘The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.In this study,the problem was solved by introducing an innovative 2.5-dimensional(2.5D)Voronoi numerical simulation method,dividing rock layers into 2.5D Voronoi blocks and developing cohesive element-based failure models,supported by a strain-softening HoekeBrown model.The method was applied to the 8311 working face in the Taishan Mine in China,and its accuracy was confirmed through physical experiments.The following conclusions were drawn.The first roof break typically followed an"O-X"pattern.The direct roof did not break randomly over time;instead,it followed three distinct scenarios:(1)A complete break of the direct roof occurred,followed by a sequential collapse(ScenarioⅠ).(2)Regional irregular stacking in one area was followed by sequential collapse in other zones(ScenarioⅡ).(3)The staged breakdown of the direct roof led to separate and sequential collapses on the left and right flanks(ScenarioⅢ).Scenario I was quite common during the 400 m advance of the working face and occurred five times.The fracture characteristics in Scenario I led to widespread pressure on the hydraulic supports in the middle of the working face.Finally,the direct roof from the working face towards the goaf area underwent phases of overhanging,hinging,and collapsing plates.After the first and periodic breaks,the basic roof formed stable hinged plate structures reinforced by overhanging plates and irregular accumulations of the direct roof.
文摘We consider the Hyperverse as a collection of multiverses in a (4 + 1)-dimensional spacetime with gravitational constant G. Multiverses in our model are bouquets of thin shells (with synchronized intrinsic times). If gis the gravitational constant of a shell Sand εits thickness, then G~εg. The physical universe is supposed to be one of those thin shells inside the local bouquet called Local Multiverse. Other remarkable objects of the Hyperverse are supposed to be black holes, black lenses, black rings and (generalized) Black Saturns. In addition, Schwarzschild-de Sitter multiversal nurseries can be hidden inside those Black Saturns, leading to their Bousso-Hawking nucleation. It also suggests that black holes in our physical universe might harbor embedded (2 + 1)-dimensional multiverses. This is compatible with outstanding ideas and results of Bekenstein, Hawking-Vaz and Corda about “black holes as atoms” and the condensation of matter on “apparent horizons”. It allows us to formulate conjecture 12.1 about the origin of the Local Multiverse. As an alternative model, we examine spacetime warping of our universe by external universes. It gives data for the accelerated expansion and the cosmological constant Λ, which are in agreement with observation, thus opening a possibility for verification of the multiverse model.
文摘ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lewy (CFL) coefficient. Toro and Titarev employed CCFL=0.95for their experiments. Nonetheless, we noted that the experiments conducted in this study with CCFL=0.95produced solutions exhibiting spurious oscillations, particularly in the high-order ADER-WAF schemes. The homogeneous one-dimensional (1D) non-linear Shallow Water Equations (SWEs) are the subject of these experiments, specifically the solution of the Riemann Problem (RP) associated with the SWEs. The investigation was conducted on four test problems to evaluate the ADER-WAF schemes of second, third, fourth, and fifth order of accuracy. Each test problem constitutes a RP characterized by different wave patterns in its solution. This research has two primary objectives. We begin by illustrating the procedure for implementing the ADER-WAF schemes for the SWEs, providing the required relations. Afterward, following comprehensive testing, we present the range for the CFL coefficient for each test that yields solutions with diminished or eliminated spurious oscillations.