The large-scale upper oceanic circulation in the South China Sea (SCS) during the northeast monsoon was investigited using a 2 1/2-layer model inrolving entrainment and detraininent at the interface between the upper ...The large-scale upper oceanic circulation in the South China Sea (SCS) during the northeast monsoon was investigited using a 2 1/2-layer model inrolving entrainment and detraininent at the interface between the upper mixed layer and the seasonal thermocline. The model allows heat fluxes at the surface and at the interfaee with a reaxation scheme, the temperatures of the two active layers can vary. The model basin is idenical to the SCS lateral boundary with bottom topography of 50 m or more and is regarded as an enclosed basin by neglecting inflow and outflow through the straits, and is forced by the climetological wind stna of 12 calendar months. It was found tha the upper oceanic currents in winter were mainly wind-driven. Most aspects of streams reported by observations were simulated with eddyresolving.展开更多
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists ...A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that展开更多
文摘The large-scale upper oceanic circulation in the South China Sea (SCS) during the northeast monsoon was investigited using a 2 1/2-layer model inrolving entrainment and detraininent at the interface between the upper mixed layer and the seasonal thermocline. The model allows heat fluxes at the surface and at the interfaee with a reaxation scheme, the temperatures of the two active layers can vary. The model basin is idenical to the SCS lateral boundary with bottom topography of 50 m or more and is regarded as an enclosed basin by neglecting inflow and outflow through the straits, and is forced by the climetological wind stna of 12 calendar months. It was found tha the upper oceanic currents in winter were mainly wind-driven. Most aspects of streams reported by observations were simulated with eddyresolving.
文摘A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that