In order to develop a marine engineering material with excellent mechanical properties and corrosion resistance,a novel non-equiatomic Co_(1.5)CrFeNi_(1.5)Ti_(0.6)high-entropy alloy(HEA)was fabricated through mechanic...In order to develop a marine engineering material with excellent mechanical properties and corrosion resistance,a novel non-equiatomic Co_(1.5)CrFeNi_(1.5)Ti_(0.6)high-entropy alloy(HEA)was fabricated through mechanical alloying and spark plasma sintering.The results revealed that the sintering temperature significantly affected the microstructure and phase composition of the HEA owing to the diffusion rate,homogenization,and sluggish diffusion effect of metal atoms.At sintering temperatures below 1050℃,HEA mainly consisted of face-centered cubic(FCC),Ni_(3)Ti(ε),Ni_(2.67)Ti_(1.33)(R),and Fe-Cr(σ)phases.The microstructure of alloy comprised coarse dendritic crystals,whose content and size gradually decreased with increasing sintering temperature.However,the HEA sintered above 1100℃contained only fine equiaxed crystals.HEA sintered at 1100℃featured only the FCC solid solution,while theε-phase precipitated at temperatures above 1150℃.At a sintering temperature of 1050℃,the alloy microstructure consisted of short rod-like dendrites and fine equiaxed crystals.This alloy achieved the highest yield strength of 1198.71 MPa owing to the effects of precipitation strengthening and grain boundary strengthening.Meanwhile,HEA sintered above 1050℃exhibited significantly improved corrosion resistance.Considering the microstructure,mechanical,and corrosion properties,1050℃was identified as the optimal sintering temperature for Co_(1.5)CrFeNi_(1.5)Ti_(0.6)HEA.展开更多
Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and ...Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.展开更多
基金supported by Special Fund for the Development of 1500-Meter Subsea Christmas Trees and Control Systems.
文摘In order to develop a marine engineering material with excellent mechanical properties and corrosion resistance,a novel non-equiatomic Co_(1.5)CrFeNi_(1.5)Ti_(0.6)high-entropy alloy(HEA)was fabricated through mechanical alloying and spark plasma sintering.The results revealed that the sintering temperature significantly affected the microstructure and phase composition of the HEA owing to the diffusion rate,homogenization,and sluggish diffusion effect of metal atoms.At sintering temperatures below 1050℃,HEA mainly consisted of face-centered cubic(FCC),Ni_(3)Ti(ε),Ni_(2.67)Ti_(1.33)(R),and Fe-Cr(σ)phases.The microstructure of alloy comprised coarse dendritic crystals,whose content and size gradually decreased with increasing sintering temperature.However,the HEA sintered above 1100℃contained only fine equiaxed crystals.HEA sintered at 1100℃featured only the FCC solid solution,while theε-phase precipitated at temperatures above 1150℃.At a sintering temperature of 1050℃,the alloy microstructure consisted of short rod-like dendrites and fine equiaxed crystals.This alloy achieved the highest yield strength of 1198.71 MPa owing to the effects of precipitation strengthening and grain boundary strengthening.Meanwhile,HEA sintered above 1050℃exhibited significantly improved corrosion resistance.Considering the microstructure,mechanical,and corrosion properties,1050℃was identified as the optimal sintering temperature for Co_(1.5)CrFeNi_(1.5)Ti_(0.6)HEA.
基金supported by the National Natural Science Foundation of China(52272222)the Taishan Scholar Young Talent Program(tsqn201909114,tsqn201909123)the University Youth Innovation Team of Shandong Province(202201010318)。
文摘Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.