Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems a...Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.展开更多
In this paper, the problem of program performance scheduling with accepting strategy is studied. Considering the uncertainty of actual situation, the duration of a program is expressed as a bounded interval. Firstly, ...In this paper, the problem of program performance scheduling with accepting strategy is studied. Considering the uncertainty of actual situation, the duration of a program is expressed as a bounded interval. Firstly, we decide which programs are accepted. Secondly, the risk preference coefficient of the decision maker is introduced. Thirdly, the min-max robust optimization model of the uncertain program show scheduling is built to minimize the performance cost and determine the sequence of these programs. Based on the above model, an effective algorithm for the original problem is proposed. The computational experiment shows that the performance’s cost (revenue) will increase (decrease) with decision maker’s risk aversion.展开更多
基金Project supported by the National Natural Science Foundation oChina (Grant os.79970107 and 10271073)
文摘Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.
文摘In this paper, the problem of program performance scheduling with accepting strategy is studied. Considering the uncertainty of actual situation, the duration of a program is expressed as a bounded interval. Firstly, we decide which programs are accepted. Secondly, the risk preference coefficient of the decision maker is introduced. Thirdly, the min-max robust optimization model of the uncertain program show scheduling is built to minimize the performance cost and determine the sequence of these programs. Based on the above model, an effective algorithm for the original problem is proposed. The computational experiment shows that the performance’s cost (revenue) will increase (decrease) with decision maker’s risk aversion.