This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti...This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.展开更多
The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertai...The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertainties. This study identifies 20 complexity factors through expert interviews and literature, categorising them into six groups. The Analytical Hierarchy Process evaluated the significance of different factors, establishing their corresponding weights to enhance adaptive project scheduling. A system dynamics (SD) model is developed and tested to evaluate the dynamic behaviour of identified complexity factors. The model simulates the impact of complexity on total project duration (TPD), revealing significant deviations from initial deterministic estimates. Data collection and analysis for reliability tests, including normality and Cronbach alpha, to validate the model’s components and expert feedback. Sensitivity analysis confirmed a positive relationship between complexity and project duration, with higher complexity levels resulting in increased TPD. This relationship highlights the inadequacy of static planning approaches and underscores the importance of addressing complexity dynamically. The study provides a framework for enhancing planning systems through system dynamics and recommends expanding the model to ensure broader applicability in diverse construction projects.展开更多
在新型电力系统复杂工况下,以策略表为主体、通过“离线仿真、在线匹配”的预案式频率稳定控制方案存在较高失配风险,甚至因调控失当引发二次冲击,严重威胁电力系统的安全稳定运行。提出一种计及预案式失配冲击的响应驱动频率稳定紧急...在新型电力系统复杂工况下,以策略表为主体、通过“离线仿真、在线匹配”的预案式频率稳定控制方案存在较高失配风险,甚至因调控失当引发二次冲击,严重威胁电力系统的安全稳定运行。提出一种计及预案式失配冲击的响应驱动频率稳定紧急切负荷策略。该策略动作在预案式控制之后,是对预案式控制的有益补充,能够有效提升系统频率稳定性。首先建立了基于系统频率响应(system frequency response,SFR)模型辨识的频率稳定切负荷量计算方法。提出了基于频率稀疏量测的SFR模型辨识方法,在此基础上建立了含稳定控制的SFR模型,根据频率稳定控制目标迭代求解切负荷量。其次,建立了基于Transformer网络的频率控制敏感点挖掘模型,通过分析关键发电机母线节点频率时序值和频率控制敏感点的映射关系,实现响应驱动的频率控制敏感点在线挖掘。最后,按照敏感点排序快速分配控制措施总量,构建频率稳定紧急控制方案。在某实际交直流混联万节点仿真系统验证了所提方法的有效性。展开更多
文摘This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.
文摘The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertainties. This study identifies 20 complexity factors through expert interviews and literature, categorising them into six groups. The Analytical Hierarchy Process evaluated the significance of different factors, establishing their corresponding weights to enhance adaptive project scheduling. A system dynamics (SD) model is developed and tested to evaluate the dynamic behaviour of identified complexity factors. The model simulates the impact of complexity on total project duration (TPD), revealing significant deviations from initial deterministic estimates. Data collection and analysis for reliability tests, including normality and Cronbach alpha, to validate the model’s components and expert feedback. Sensitivity analysis confirmed a positive relationship between complexity and project duration, with higher complexity levels resulting in increased TPD. This relationship highlights the inadequacy of static planning approaches and underscores the importance of addressing complexity dynamically. The study provides a framework for enhancing planning systems through system dynamics and recommends expanding the model to ensure broader applicability in diverse construction projects.
文摘在新型电力系统复杂工况下,以策略表为主体、通过“离线仿真、在线匹配”的预案式频率稳定控制方案存在较高失配风险,甚至因调控失当引发二次冲击,严重威胁电力系统的安全稳定运行。提出一种计及预案式失配冲击的响应驱动频率稳定紧急切负荷策略。该策略动作在预案式控制之后,是对预案式控制的有益补充,能够有效提升系统频率稳定性。首先建立了基于系统频率响应(system frequency response,SFR)模型辨识的频率稳定切负荷量计算方法。提出了基于频率稀疏量测的SFR模型辨识方法,在此基础上建立了含稳定控制的SFR模型,根据频率稳定控制目标迭代求解切负荷量。其次,建立了基于Transformer网络的频率控制敏感点挖掘模型,通过分析关键发电机母线节点频率时序值和频率控制敏感点的映射关系,实现响应驱动的频率控制敏感点在线挖掘。最后,按照敏感点排序快速分配控制措施总量,构建频率稳定紧急控制方案。在某实际交直流混联万节点仿真系统验证了所提方法的有效性。