Prominent cadmium(Cd)pollution and widespread phoxim(p H)use hinder the growth and medicinal value of Ligusticum chuanxiong Hort.(Chuanxiong).While bioremediation by rhizobacteria helps plants counter pollutants,the s...Prominent cadmium(Cd)pollution and widespread phoxim(p H)use hinder the growth and medicinal value of Ligusticum chuanxiong Hort.(Chuanxiong).While bioremediation by rhizobacteria helps plants counter pollutants,the specific roles of indigenous resistant consortia collected from polluted soils in immobilizing heavy metals,degrading pesticides,and enhancing plant stress tolerance remain insufficiently explored.Here,an indigenous pollutant-resistant consortium(RM)was developed from a highly Cd-polluted area(14.85 mg/kg Cd)as a bioremediation strategy to alleviate stress on Chuanxiong.The RM was specifically enriched with a Cd-p H co-resistant strain,Halomonas spp.TS2.Through16S r RNA sequencing,active microorganisms within RM was identified,including Bacillus,Acinetobacter,Enterococcus,Paraclostridium,and Staphylococcus.Pot experiments demonstrated that RM increased Chuanxiong biomass by 93.38%under Cd-contaminated and by 32.89%under Cd-p H co-contaminated.Furthermore,RM enhanced p H degradation,stabilized soil compounds,and reduced Cd bioavailability,thereby mitigating oxidative damage and altering the diversity and composition of Cd-p H-resistant organisms.These results indicate that utilizing indigenous microbial consortia as a bioremediation strategy can effectively improve soil health and enhance the sustainable cultivation of medicinal herbs in environments heavily contaminated.展开更多
Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacte...Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].展开更多
The last research focuses on the role of exosomes in cancer treatment.Exosomes are extracellular vesicles.They can be secreted by cancer cells,and they can modulate chemotherapy sensitivity.Determining exosomal conten...The last research focuses on the role of exosomes in cancer treatment.Exosomes are extracellular vesicles.They can be secreted by cancer cells,and they can modulate chemotherapy sensitivity.Determining exosomal content opens the possibility for guiding treatment strategies for cancer diseases.Exosomal microRNA are considered one of the prime candidates for exosomal biomarkers.Exosomal circular RNAs represent excellent biomarkers for liquid biopsy because of their stability in many types of cancer.Exosomal proteins remain reliable biomarkers also.Exosomes have emerged as promising therapeutic candidates.Their biological properties render them ideal vectors for drug delivery.Genetic modification of exosomes is an effective way to deliver material capable of modulating cellular pathways involved in drug resistance.Furthermore,exosomes have been explored as carriers for metal-chelating agents.Integrating exosome-based therapies with traditional anticancer agents aims to exploit the natural targeting abilities of exosomes to enhance drug delivery.Despite the dynamic development of this field,many mechanisms of exosome action remain incompletely understood.Therefore,it is necessary to conduct further studies that will allow for a better understanding of their role in the process of resistance and will enable the development of effective therapeutic strategies.展开更多
Objective:To analyse the prevalence of serotypes,antibiotic resistance,and virulence genes of Group B Streptococcus(GBS)strains isolated from pregnant women at 35-37 weeks of gestation in Ho Chi Minh City,Vietnam,from...Objective:To analyse the prevalence of serotypes,antibiotic resistance,and virulence genes of Group B Streptococcus(GBS)strains isolated from pregnant women at 35-37 weeks of gestation in Ho Chi Minh City,Vietnam,from January 2022 to January 2023.Methods:GBS strains were isolated through selective culture methods and confirmed by PCR.Serotyping,virulence gene detection,and antibiotic susceptibility testing were performed using PCR,gel electrophoresis techniques and Kirby-Bauer test.Results:Totally,61 GBS isolated from 300 participants have been identified including seven GBS serotypes(Ⅰa,Ⅰb,Ⅱ,Ⅲ,Ⅳ,Ⅴ,andⅥ).SerotypesⅦ,Ⅷ,andⅨwere not detected in the study population.Antibiotic resistance patterns varied:13.1%of isolates were fully susceptible,while the majority showed multi-drug resistance,with 34.4%resistant to three antibiotics.SerotypeⅠa demonstrated high susceptibility(35.7%),while serotypeⅢshowed extensive resistance,with 87.5%being resistant to at least three antibiotics.All strains are susceptible to vancomycin andβ-lactams susceptibility also remained high,but resistance to clindamycin,erythromycin,and tetracycline was high(>65%).The virulence genes scpB,cylB,fbsB,and cfb were highly prevalent(90%-100%),indicating their potential for vaccine and diagnostic development.Conclusions:Our findings provide valuable insights into GBS serotypes,resistance,and virulence factors,contributing to community monitoring,preventive measures,diagnostics,and vaccine development.However,the limited sample size necessitates further research.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-gener...We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-generation recycled concrete aggregates(RCA)were used to analyze the regeneration potential of RAC after F-T cycles.Scanning electron microscopy was used to study the interfacial transition zone microstructure of RAC after F-T cycles.Results showed that adding 20%FA to RAC significantly enhanced its mechanical properties and frost resistance.Before the F-T cycles,the compressive strength of RAC with 20%FA reached 48.3 MPa,exceeding research strength target of 40 MPa.A majority of second-generation RCA with FA had been verified to attain class Ⅲ,which enabled their practical application in non-structural projects such as backfill trenches and road pavement.However,the second-generation RCA with 20%FA can achieve class Ⅱ,making it ideal for 40 MPa structural concrete.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may...Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.展开更多
Type 2 diabetes mellitus has central complications:Diabetes,a metabolic disorder primarily characterized by hyperglycemia due to insufficient insulin secretion,or impaired insulin signaling,has significant central com...Type 2 diabetes mellitus has central complications:Diabetes,a metabolic disorder primarily characterized by hyperglycemia due to insufficient insulin secretion,or impaired insulin signaling,has significant central complications.Type 2 diabetes mellitus(T2DM),the most prevalent type of diabetes,affects more than 38 million individuals in the United States(approximately 1 in 10)and is defined by chronic hyperglycemia and insulin resistance,which refers to a reduced cellular response to insulin.展开更多
Background:Breakpoint Cluster Region-Abelson(BCR::ABL1)fusion protein is essential in the pathogenesis of chronic myeloid leukemia(CML);however,the chronic-to-blast phase transformation remains elusive.We identified n...Background:Breakpoint Cluster Region-Abelson(BCR::ABL1)fusion protein is essential in the pathogenesis of chronic myeloid leukemia(CML);however,the chronic-to-blast phase transformation remains elusive.We identified novel kinesin light chain 2(KLC2)mutations in CML-myeloid blast phase patients.We aimed to examine the functional role of KLC2 mutations in leukemogenesis.Methods:To evaluate the biological role of KLC2 mutants(MT)in CML cells,we expressed KLC2-MT in different human CML cell lines harboring BCR::ABL1 and performed immunoblot,immunofluorescence,cell proliferation,differentiation,and apoptosis;Tyrosine kinase inhibitor(TKI)-drug activities;and clonogenic assays for in vitro functional analyses.We co-expressed KLC2-MT and BCR::ABL1 in mouse bone marrow cells(BMCs)to evaluate their clonogenic and self-renewal abilities ex vivo.Furthermore,we examined tumorigenic activity and drug efficacy in the K562 xenograft model.Results:KLC2-MT overexpression in BCR::ABL1-positive K562 and KU812 CML cells promoted cell proliferation and clonogenic potential,decreased imatinib sensitivity,and reduced apoptosis.Serial colony replating assays revealed that KLC2-MT and BCR::ABL1 co-expression enhanced the self-renewal ability of mouse BMCs with immature morphology.In the K562 xenograft model,KLC2-MT enhanced tumorigenic potential and diminished imatinib efficacy.Further studies reported that KLC2-MT augmented signal transducer and activator of transcription 3(STAT3)activation and nuclear accumulation in imatinib-treated CML cells.KLC2-WT and KLC2-MT interacted with mothers against decapentaplegic homolog 2(SMAD2);however,the latter impaired transforming growth factor-beta(TGF-β)–mediated SMAD2/3 activation while enhancing STAT3 phosphorylation.Conclusions:This study demonstrates the biological and functional importance of KLC2 mutation in CML cells,potentially enabling the development of better treatment strategies for CML patients carrying KLC2 mutations and providing enhanced understanding of the disease progression.展开更多
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a...Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.展开更多
BACKGROUND Acute hyperglycemia due to insulin resistance is common in critically ill patients,typically managed with insulin infusion.However,the occurrence of transient extreme insulin resistance(EIR)requiring except...BACKGROUND Acute hyperglycemia due to insulin resistance is common in critically ill patients,typically managed with insulin infusion.However,the occurrence of transient extreme insulin resistance(EIR)requiring exceptional high-dose insulin is rare.CASE SUMMARY We present the case of a 68-year-old woman with pneumonia who suffered an out-of-hospital cardiac arrest,subsequently developing transient EIR following a new episode of sepsis.Remarkably,insulin resistance rapidly reversed when the insulin infusion rate peaked at 960 units/hour(a total of 18224 units on that day),and it was promptly titrated down to zero upon achieving the target glucose level.CONCLUSION Exceptional high-dose insulin infusion may be required in critically ill patients with stress-related EIR,which is typically transient.Clinicians should be aware of the phenomenon and cautious to avoid hypoglycemia and fluid overload during the steep titration of high-dose insulin infusion.展开更多
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
BACKGROUND Antibiotic resistance is a key factor influencing the treatment outcomes of Helicobacter pylori(H.pylori)infection.The antibiotic resistance spectrum of H.pylori varies in different regions.We investigated ...BACKGROUND Antibiotic resistance is a key factor influencing the treatment outcomes of Helicobacter pylori(H.pylori)infection.The antibiotic resistance spectrum of H.pylori varies in different regions.We investigated the current status of antibiotic resistance of H.pylori in Hunan Province and analyzed the factors related to such resistance to provide strategies for the accurate clinical treatment of H.pylori infection.AIM To understand the antibiotic resistance of H.pylori in Hunan Province and provide guidance for the clinical treatment of H.pylori infection.METHODS This study selected patients who underwent gastroscopy in five hospitals in Hunan Province from April 2022 to April 2023.The sensitivity of H.pylori to clarithromycin,levofloxacin,metronidazole,amoxicillin,furazolidone,and tetracycline was detected using the Agar dilution method.RESULTS H.pylori strains from a total of 566 patients were isolated and identified.The resistance rates of H.pylori strains to clarithromycin,levofloxacin,metronidazole,amoxicillin,furazolidone,and tetracycline were 49.2%,37.8%,76.1%,2.3%,1.4%,and 0.7%,respectively.The resistance rates to clarithromycin,levofloxacin,and metronidazole were high in the four regions of Hunan Province,and the overall resistance rates in central Hunan Province were higher than those in other regions.The resistance rates of H.pylori strains to clarithromycin and levofloxacin were significantly different among the different age groups(P<0.05),with the elderly group having a higher resistance rate than the young group.The resistance rate of H.pylori strains to clarithromycin was greater in patients with atrophic gastritis,and the resistance rate to levofloxacin was the lowest in patients with peptic ulcers.CONCLUSION The resistance rate of H.pylori to amoxicillin,clarithromycin,and metronidazole is high in Hunan Province.Age,stomach disease,and H.pylori reinfection may affect the antibiotic resistance of H.pylori.展开更多
Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage...Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.展开更多
Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e...Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.展开更多
BACKGROUND Liver transplant(LT)recipients are susceptible to carbapenem-resistant Klebsiella pneumoniae(CRKP)infections.Comprehensive research addressing the incidence,timing,infection sites,resistance patterns,treatm...BACKGROUND Liver transplant(LT)recipients are susceptible to carbapenem-resistant Klebsiella pneumoniae(CRKP)infections.Comprehensive research addressing the incidence,timing,infection sites,resistance patterns,treatment options,and associated risk factors among LT recipients with CRKP is now lacking.AIM To assess the incidence,resistance,therapy,and risk factors of CRKP infections post-LT,and to evaluate the impact of them on prognosis.METHODS A retrospective study was conducted,including 430 consecutive patients who underwent LT between January 2015 and June 2023.This study aimed to investigate the risk factors for CRKP infections and their influence on outcomes using logistic regression analysis.RESULTS Among the 430 patients who underwent LT,20(4.7%)experienced at least one documented CRKP infection within 3 months post-transplantation.The median time from LT to the onset of CRKP infections was 6.5 days.The lungs and bloodstream were the most common sites of CRKP infections.CRKP isolates were relatively susceptible to ceftazidime/avibactam(93.7%),polymyxin B(90.6%),and tigecycline(75.0%)treatment.However,all isolates were resistant to piperacillin/tazobactam,ceftazidime,cefepime,aztreonam,meropenem,and levofloxacin treatment.Recipients with CRKP infections had a mortality rate of 35%,the rate was 12.5%for those receiving ceftazidime/avibactam therapy.Multivariate analysis identified female sex[odds ratio(OR)=3.306;95%confidence interval(CI):1.239-8.822;P=0.017],intraoperative bleeding≥3000 mL(OR=3.269;95%CI:1.018-10.490;P=0.047),alanine aminotransferase on day 1 post-LT≥1500 U/L(OR=4.370;95%CI:1.686-11.326;P=0.002),and post-LT mechanical ventilation(OR=2.772;95%CI:1.077-7.135;P=0.035)as significant variables associated with CRKP.CRKP infections were related to an intensive care unit length(ICU)of stay≥7 days and 6-month all-cause mortality post-LT.CONCLUSION CRKP infections were frequent complications following LT,with poor associated outcomes.Risk factors for post-LT CRKP infections included female sex,significant intraoperative bleeding,elevated alanine aminotransferase levels,and the need for mechanical ventilation.CRKP infections negatively impacted survival and led to prolonged ICU stays.展开更多
Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,...Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.展开更多
Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection ...Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.展开更多
The rapid development of industrialization requires the advancement of multifunctional coatings.In this study,successful self-assembly of iron porphyrin on BP nanosheets resulted in the synthesis of IBP nanosheets wit...The rapid development of industrialization requires the advancement of multifunctional coatings.In this study,successful self-assembly of iron porphyrin on BP nanosheets resulted in the synthesis of IBP nanosheets with a sandwich structure.Characterization tests including SEM,XPS,SPM,and XRD confirmed the successful preparation of IBP nanosheets with robust structural stability and antioxidation.Subsequently,a water-based epoxy resin(WEP)coating containing IBP nanosheets was prepared.Test results revealed that the composite coating containing 0.4 wt.%IBP nanosheets exhibited outstanding anti-corrosion,wear-resistant,and flame-retardant properties.After 42 days of immersion in a 3.5 wt.%NaCl solution,the Rct value of the 4-IBP/WEP coating was 1.79×10^(9)Ωcm^(2),surpassing the Pure WEP coating by more than 3 orders of magnitude.Additionally,the peak heat release rate(PHRR)and wear rate of the 4-IBP/WEP coating decreased by 19.29%and 90.97%compared to the Pure WEP coating.This research presents a novel idea for the utilization of BP nanosheets in multifunctional coatings.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51978576,42207021 and 52370177)Sichuan Province Science and Technology Support Program(Nos.2023ZHCG0058,2025ZNSFSC0194 and 2024NSFSC0131)+1 种基金the Fundamental Research Funds for the Central Universities(No.2682024ZTPY012)the Science and Technology Project of Sichuan Tobacco Company of China National Tobacco Corporation(Nos.SCYC202109 and SCYC202409)。
文摘Prominent cadmium(Cd)pollution and widespread phoxim(p H)use hinder the growth and medicinal value of Ligusticum chuanxiong Hort.(Chuanxiong).While bioremediation by rhizobacteria helps plants counter pollutants,the specific roles of indigenous resistant consortia collected from polluted soils in immobilizing heavy metals,degrading pesticides,and enhancing plant stress tolerance remain insufficiently explored.Here,an indigenous pollutant-resistant consortium(RM)was developed from a highly Cd-polluted area(14.85 mg/kg Cd)as a bioremediation strategy to alleviate stress on Chuanxiong.The RM was specifically enriched with a Cd-p H co-resistant strain,Halomonas spp.TS2.Through16S r RNA sequencing,active microorganisms within RM was identified,including Bacillus,Acinetobacter,Enterococcus,Paraclostridium,and Staphylococcus.Pot experiments demonstrated that RM increased Chuanxiong biomass by 93.38%under Cd-contaminated and by 32.89%under Cd-p H co-contaminated.Furthermore,RM enhanced p H degradation,stabilized soil compounds,and reduced Cd bioavailability,thereby mitigating oxidative damage and altering the diversity and composition of Cd-p H-resistant organisms.These results indicate that utilizing indigenous microbial consortia as a bioremediation strategy can effectively improve soil health and enhance the sustainable cultivation of medicinal herbs in environments heavily contaminated.
文摘Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].
文摘The last research focuses on the role of exosomes in cancer treatment.Exosomes are extracellular vesicles.They can be secreted by cancer cells,and they can modulate chemotherapy sensitivity.Determining exosomal content opens the possibility for guiding treatment strategies for cancer diseases.Exosomal microRNA are considered one of the prime candidates for exosomal biomarkers.Exosomal circular RNAs represent excellent biomarkers for liquid biopsy because of their stability in many types of cancer.Exosomal proteins remain reliable biomarkers also.Exosomes have emerged as promising therapeutic candidates.Their biological properties render them ideal vectors for drug delivery.Genetic modification of exosomes is an effective way to deliver material capable of modulating cellular pathways involved in drug resistance.Furthermore,exosomes have been explored as carriers for metal-chelating agents.Integrating exosome-based therapies with traditional anticancer agents aims to exploit the natural targeting abilities of exosomes to enhance drug delivery.Despite the dynamic development of this field,many mechanisms of exosome action remain incompletely understood.Therefore,it is necessary to conduct further studies that will allow for a better understanding of their role in the process of resistance and will enable the development of effective therapeutic strategies.
文摘Objective:To analyse the prevalence of serotypes,antibiotic resistance,and virulence genes of Group B Streptococcus(GBS)strains isolated from pregnant women at 35-37 weeks of gestation in Ho Chi Minh City,Vietnam,from January 2022 to January 2023.Methods:GBS strains were isolated through selective culture methods and confirmed by PCR.Serotyping,virulence gene detection,and antibiotic susceptibility testing were performed using PCR,gel electrophoresis techniques and Kirby-Bauer test.Results:Totally,61 GBS isolated from 300 participants have been identified including seven GBS serotypes(Ⅰa,Ⅰb,Ⅱ,Ⅲ,Ⅳ,Ⅴ,andⅥ).SerotypesⅦ,Ⅷ,andⅨwere not detected in the study population.Antibiotic resistance patterns varied:13.1%of isolates were fully susceptible,while the majority showed multi-drug resistance,with 34.4%resistant to three antibiotics.SerotypeⅠa demonstrated high susceptibility(35.7%),while serotypeⅢshowed extensive resistance,with 87.5%being resistant to at least three antibiotics.All strains are susceptible to vancomycin andβ-lactams susceptibility also remained high,but resistance to clindamycin,erythromycin,and tetracycline was high(>65%).The virulence genes scpB,cylB,fbsB,and cfb were highly prevalent(90%-100%),indicating their potential for vaccine and diagnostic development.Conclusions:Our findings provide valuable insights into GBS serotypes,resistance,and virulence factors,contributing to community monitoring,preventive measures,diagnostics,and vaccine development.However,the limited sample size necessitates further research.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20220626)the National Natural Science Foundation of China(No.52078068)+2 种基金Science and Technology Innovation Foundation of NIT(No.KCTD006)Jiangsu Marine Structure Service Performance Improvement Engineering Research CenterKey Laboratory of Jiangsu"Marine Floating Wind Power Technology and Equipment"。
文摘We investigated the effects of fly ash(FA)content on the mechanical properties of recycled aggregate concrete(RAC)and its regeneration potential under freeze and thaw(F-T)cycles.The physical properties of second-generation recycled concrete aggregates(RCA)were used to analyze the regeneration potential of RAC after F-T cycles.Scanning electron microscopy was used to study the interfacial transition zone microstructure of RAC after F-T cycles.Results showed that adding 20%FA to RAC significantly enhanced its mechanical properties and frost resistance.Before the F-T cycles,the compressive strength of RAC with 20%FA reached 48.3 MPa,exceeding research strength target of 40 MPa.A majority of second-generation RCA with FA had been verified to attain class Ⅲ,which enabled their practical application in non-structural projects such as backfill trenches and road pavement.However,the second-generation RCA with 20%FA can achieve class Ⅱ,making it ideal for 40 MPa structural concrete.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金funded by the American University of Sharjah.United Arab Emirates award number EN 9502-FRG19-M-E75。
文摘Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.
基金supported by grants from NIH T32(DK007260,to WC)the Steno North American Fellowship awarded by the Novo Nordisk Foundation(NNF23OC0087108,to WC)+6 种基金STI2030-Major Projects(2021ZD0202700,to HY)the National Natural Science Foundation of China(32241004,to HY)the Natural Science Foundation of Zhejiang Province of China(LR24C090001,to HY)Key R&D Program of Zhejiang Province(2024SSYS0017,to HY)CAMS Innovation Fund for Medical Sciences(2019-12M-5-057,to HY)Fundamental Research Funds for the Central Universities(226-2022-00193,to HY)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2023-PT310-01,to HY)。
文摘Type 2 diabetes mellitus has central complications:Diabetes,a metabolic disorder primarily characterized by hyperglycemia due to insufficient insulin secretion,or impaired insulin signaling,has significant central complications.Type 2 diabetes mellitus(T2DM),the most prevalent type of diabetes,affects more than 38 million individuals in the United States(approximately 1 in 10)and is defined by chronic hyperglycemia and insulin resistance,which refers to a reduced cellular response to insulin.
基金supported by grants from the Ministry of Science and Technology,Taiwan(MOST108-2314-B-182-006,MOST109-2314-B-182-071:Lee-Yung Shih)the Ministry of Health and Welfare,Taiwan(MOHW110-TDU-B-212-134011:Lee-Yung Shih)+3 种基金Chang Gung Memorial Hospital(CMRPG3D1524,OMRPG3E0031:Lee-Yung Shih)the Grant-in-Aid for the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP19H05656:Seishi Ogawa,22K16320:Yotaro Ochi)the Japan Agency for Medical Research and Development(AMED)(JP19cm0106501h0004,JP19ck0106250h0003:Seishi Ogawa)the Ministry of Education,Culture,Sports,Science and Technology of Japan(MEXT)(hp200138,hp210167:Seishi Ogawa)。
文摘Background:Breakpoint Cluster Region-Abelson(BCR::ABL1)fusion protein is essential in the pathogenesis of chronic myeloid leukemia(CML);however,the chronic-to-blast phase transformation remains elusive.We identified novel kinesin light chain 2(KLC2)mutations in CML-myeloid blast phase patients.We aimed to examine the functional role of KLC2 mutations in leukemogenesis.Methods:To evaluate the biological role of KLC2 mutants(MT)in CML cells,we expressed KLC2-MT in different human CML cell lines harboring BCR::ABL1 and performed immunoblot,immunofluorescence,cell proliferation,differentiation,and apoptosis;Tyrosine kinase inhibitor(TKI)-drug activities;and clonogenic assays for in vitro functional analyses.We co-expressed KLC2-MT and BCR::ABL1 in mouse bone marrow cells(BMCs)to evaluate their clonogenic and self-renewal abilities ex vivo.Furthermore,we examined tumorigenic activity and drug efficacy in the K562 xenograft model.Results:KLC2-MT overexpression in BCR::ABL1-positive K562 and KU812 CML cells promoted cell proliferation and clonogenic potential,decreased imatinib sensitivity,and reduced apoptosis.Serial colony replating assays revealed that KLC2-MT and BCR::ABL1 co-expression enhanced the self-renewal ability of mouse BMCs with immature morphology.In the K562 xenograft model,KLC2-MT enhanced tumorigenic potential and diminished imatinib efficacy.Further studies reported that KLC2-MT augmented signal transducer and activator of transcription 3(STAT3)activation and nuclear accumulation in imatinib-treated CML cells.KLC2-WT and KLC2-MT interacted with mothers against decapentaplegic homolog 2(SMAD2);however,the latter impaired transforming growth factor-beta(TGF-β)–mediated SMAD2/3 activation while enhancing STAT3 phosphorylation.Conclusions:This study demonstrates the biological and functional importance of KLC2 mutation in CML cells,potentially enabling the development of better treatment strategies for CML patients carrying KLC2 mutations and providing enhanced understanding of the disease progression.
基金National Natural Science Foundation of China(52071126)Natural Science Foundation of Tianjin City,China(22JCQNJC01240)+2 种基金Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1009G)Special Funds for Science and Technology Innovation in Hebei(2022X19)Anhui Provincial Natural Science Foundation(2308085ME135)。
文摘Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.
文摘BACKGROUND Acute hyperglycemia due to insulin resistance is common in critically ill patients,typically managed with insulin infusion.However,the occurrence of transient extreme insulin resistance(EIR)requiring exceptional high-dose insulin is rare.CASE SUMMARY We present the case of a 68-year-old woman with pneumonia who suffered an out-of-hospital cardiac arrest,subsequently developing transient EIR following a new episode of sepsis.Remarkably,insulin resistance rapidly reversed when the insulin infusion rate peaked at 960 units/hour(a total of 18224 units on that day),and it was promptly titrated down to zero upon achieving the target glucose level.CONCLUSION Exceptional high-dose insulin infusion may be required in critically ill patients with stress-related EIR,which is typically transient.Clinicians should be aware of the phenomenon and cautious to avoid hypoglycemia and fluid overload during the steep titration of high-dose insulin infusion.
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
基金Supported by the National Natural Science Foundation of China,No.82270594the Independent Exploration and Innovation Project of Central South University,No.2024ZZTS0966.
文摘BACKGROUND Antibiotic resistance is a key factor influencing the treatment outcomes of Helicobacter pylori(H.pylori)infection.The antibiotic resistance spectrum of H.pylori varies in different regions.We investigated the current status of antibiotic resistance of H.pylori in Hunan Province and analyzed the factors related to such resistance to provide strategies for the accurate clinical treatment of H.pylori infection.AIM To understand the antibiotic resistance of H.pylori in Hunan Province and provide guidance for the clinical treatment of H.pylori infection.METHODS This study selected patients who underwent gastroscopy in five hospitals in Hunan Province from April 2022 to April 2023.The sensitivity of H.pylori to clarithromycin,levofloxacin,metronidazole,amoxicillin,furazolidone,and tetracycline was detected using the Agar dilution method.RESULTS H.pylori strains from a total of 566 patients were isolated and identified.The resistance rates of H.pylori strains to clarithromycin,levofloxacin,metronidazole,amoxicillin,furazolidone,and tetracycline were 49.2%,37.8%,76.1%,2.3%,1.4%,and 0.7%,respectively.The resistance rates to clarithromycin,levofloxacin,and metronidazole were high in the four regions of Hunan Province,and the overall resistance rates in central Hunan Province were higher than those in other regions.The resistance rates of H.pylori strains to clarithromycin and levofloxacin were significantly different among the different age groups(P<0.05),with the elderly group having a higher resistance rate than the young group.The resistance rate of H.pylori strains to clarithromycin was greater in patients with atrophic gastritis,and the resistance rate to levofloxacin was the lowest in patients with peptic ulcers.CONCLUSION The resistance rate of H.pylori to amoxicillin,clarithromycin,and metronidazole is high in Hunan Province.Age,stomach disease,and H.pylori reinfection may affect the antibiotic resistance of H.pylori.
基金financially supported by National Natural Science Foundation of China(32301800,32301923 and 32072053)Wheat Industrial Technology System of Shandong Province(SDAIT-01-01)Key Research and Development Project of Shandong Province(2022LZG002-4,2023LZGC009-4-4).
文摘Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107)+1 种基金the Jiangsu Key R&D program,China(No.BE2019072)the special project of Gansu regional science and technology cooperation,China(No.20JR10 QA579).
文摘Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.
文摘BACKGROUND Liver transplant(LT)recipients are susceptible to carbapenem-resistant Klebsiella pneumoniae(CRKP)infections.Comprehensive research addressing the incidence,timing,infection sites,resistance patterns,treatment options,and associated risk factors among LT recipients with CRKP is now lacking.AIM To assess the incidence,resistance,therapy,and risk factors of CRKP infections post-LT,and to evaluate the impact of them on prognosis.METHODS A retrospective study was conducted,including 430 consecutive patients who underwent LT between January 2015 and June 2023.This study aimed to investigate the risk factors for CRKP infections and their influence on outcomes using logistic regression analysis.RESULTS Among the 430 patients who underwent LT,20(4.7%)experienced at least one documented CRKP infection within 3 months post-transplantation.The median time from LT to the onset of CRKP infections was 6.5 days.The lungs and bloodstream were the most common sites of CRKP infections.CRKP isolates were relatively susceptible to ceftazidime/avibactam(93.7%),polymyxin B(90.6%),and tigecycline(75.0%)treatment.However,all isolates were resistant to piperacillin/tazobactam,ceftazidime,cefepime,aztreonam,meropenem,and levofloxacin treatment.Recipients with CRKP infections had a mortality rate of 35%,the rate was 12.5%for those receiving ceftazidime/avibactam therapy.Multivariate analysis identified female sex[odds ratio(OR)=3.306;95%confidence interval(CI):1.239-8.822;P=0.017],intraoperative bleeding≥3000 mL(OR=3.269;95%CI:1.018-10.490;P=0.047),alanine aminotransferase on day 1 post-LT≥1500 U/L(OR=4.370;95%CI:1.686-11.326;P=0.002),and post-LT mechanical ventilation(OR=2.772;95%CI:1.077-7.135;P=0.035)as significant variables associated with CRKP.CRKP infections were related to an intensive care unit length(ICU)of stay≥7 days and 6-month all-cause mortality post-LT.CONCLUSION CRKP infections were frequent complications following LT,with poor associated outcomes.Risk factors for post-LT CRKP infections included female sex,significant intraoperative bleeding,elevated alanine aminotransferase levels,and the need for mechanical ventilation.CRKP infections negatively impacted survival and led to prolonged ICU stays.
基金supported by the National Key R&D Pro-gram of China(Grant No.2021YFA0715803)the National Natural Science Foundation of China(Grant Nos.52293373,52130205,and 52302091)+1 种基金the Joint Fund of Henan Province Science and Technol-ogy R&D Program(No.225200810002)the ND Basic Research Funds of Northwestern Polytechnical University(No.G2022WD).
文摘Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.
基金supported by a grant of the Deutsche Forschungsgemeinschaft(DFGCRC1177 and joint DFG/ANR grant)(to CB)a fellowship of the Deutscher Akademischer Austauschdienst(DAAD)(to TNMP)。
文摘Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.
基金supports from the Science and Technology Program of Guangzhou(No.2024A04J3710)the National Natural Science Foundation of China(No.22268025).
文摘The rapid development of industrialization requires the advancement of multifunctional coatings.In this study,successful self-assembly of iron porphyrin on BP nanosheets resulted in the synthesis of IBP nanosheets with a sandwich structure.Characterization tests including SEM,XPS,SPM,and XRD confirmed the successful preparation of IBP nanosheets with robust structural stability and antioxidation.Subsequently,a water-based epoxy resin(WEP)coating containing IBP nanosheets was prepared.Test results revealed that the composite coating containing 0.4 wt.%IBP nanosheets exhibited outstanding anti-corrosion,wear-resistant,and flame-retardant properties.After 42 days of immersion in a 3.5 wt.%NaCl solution,the Rct value of the 4-IBP/WEP coating was 1.79×10^(9)Ωcm^(2),surpassing the Pure WEP coating by more than 3 orders of magnitude.Additionally,the peak heat release rate(PHRR)and wear rate of the 4-IBP/WEP coating decreased by 19.29%and 90.97%compared to the Pure WEP coating.This research presents a novel idea for the utilization of BP nanosheets in multifunctional coatings.