Figure 3 in the paper[Chin.Phys.B 34020701(2025)]contains an axis labeling error.The revised figure is provided.This modification does not affect the result presented in the paper.
Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing fac...Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing factor is the lack of foundational understanding of in vivo processes.Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.However,the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies.Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug,the encapsulated drug,and the nanomaterial,which present a higher level of complexity compared to traditional small-molecule drugs.Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines.This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years.We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.展开更多
Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we...Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.展开更多
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
BACKGROUNDThe treatment of postoperative anastomotic stenosis(AS)after resection of colorectalcancer is challenging.Endoscopic balloon dilation is used to treat stenosisin such cases,but some patients do not show impr...BACKGROUNDThe treatment of postoperative anastomotic stenosis(AS)after resection of colorectalcancer is challenging.Endoscopic balloon dilation is used to treat stenosisin such cases,but some patients do not show improvement even after multipleballoon dilations.Magnetic compression technique(MCT)has been used for gastrointestinalanastomosis,but its use for the treatment of postoperative AS aftercolorectal cancer surgery has rarely been reported.CASE SUMMARYWe report a 72-year-old man who underwent radical resection of colorectal cancerand ileostomy one year ago.An ileostomy closure was prepared six months ago,but colonoscopy revealed a narrowing of the rectal anastomosis.Endoscopic balloondilation was performed three times,but colonoscopy showed no significantimprovement in stenosis.The AS was successfully treated using MCT.CONCLUSIONMCT is a minimally invasive method that can be used for the treatment of postoperativeAS after colorectal cancer surgery.展开更多
BACKGROUND Magnetic anchor technique(MAT)has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy,but has not been reported in laparoscopic partial hepatectomy.AIM To evaluate the feasibility of ...BACKGROUND Magnetic anchor technique(MAT)has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy,but has not been reported in laparoscopic partial hepatectomy.AIM To evaluate the feasibility of the MAT in laparoscopic left lateral segment liver resection.METHODS Retrospective analysis was conducted on the clinical data of eight patients who underwent laparoscopic left lateral segment liver resection assisted by MAT in our department from July 2020 to November 2021.The Y-Z magnetic anchor devices(Y-Z MADs)was independently designed and developed by the author of this paper,which consists of the anchor magnet and magnetic grasping apparatus.Surgical time,intraoperative blood loss,intraoperative accidents,operator experience,postoperative incision pain score,postoperative complications,and other indicators were evaluated and analyzed.RESULTS All eight patients underwent a MAT-assisted laparoscopic left lateral segment liver resection,including three patients undertaking conventional 5-port and five patients having a transumbilical single-port operation.The mean operation time was 138±34.32 min(range 95-185 min)and the mean intraoperative blood loss was 123±88.60 mL(range 20-300 mL).No adverse events occurred during the operation.The Y-Z MADs showed good workability and maneuverability in both tissue and organ exposure.In particular,the operators did not experience either a“chopstick”or“sword-fight”effect in the single-port laparoscopic operation.CONCLUSION The results show that the MAT is safe and feasible for laparoscopic left lateral segment liver resection,especially,exhibits its unique abettance for transumbilical single-port laparoscopic left lateral segment liver resection.展开更多
BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model ...BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model control.We designed a Tshaped magnet system to overcome these problems and verified its effectiveness via animal experiments.AIM To investigate the effectiveness of a T-shaped magnet system for establishing a TEF model in beagle dogs.METHODS Twelve beagles were randomly assigned to groups in which magnets of the Tshaped scheme(study group,n=6)or normal magnets(control group,n=6)were implanted into the trachea and esophagus separately under gastroscopy.Operation time,operation success rate,and accidental injury were recorded.After operation,the presence and timing of cough and the time of magnet shedding were observed.Dogs in the control group were euthanized after X-ray and gastroscopy to confirm establishment of TEFs after coughing,and gross specimens of TEFs were obtained.Dogs in the study group were euthanized after X-ray and gastroscopy 2 wk after surgery,and gross specimens were obtained.Fistula size was measured in all animals,and then harvested fistula specimens were examined by hematoxylin and eosin(HE)and Masson trichrome staining.RESULTS The operation success rate was 100%for both groups.Operation time did not differ between the study group(5.25 min±1.29 min)and the control group(4.75 min±1.70 min;P=0.331).No bleeding,perforation,or unplanned magnet attraction occurred in any animal during the operation.In the early postoperative period,all dogs ate freely and were generally in good condition.Dogs in the control group had severe cough after drinking water at 6-9 d after surgery.X-ray indicated that the magnets had entered the stomach,and gastroscopy showed TEF formation.Gross specimens of TEFs from the control group showed the formation of fistulas with a diameter of 4.94 mm±1.29 mm(range,3.52-6.56 mm).HE and Masson trichrome staining showed scar tissue formation and hierarchical structural disorder at the fistulas.Dogs in the study group did not exhibit obvious coughing after surgery.X-ray examination 2 wk after surgery indicated fixed magnet positioning,and gastroscopy showed no change in magnet positioning.The magnets were removed using a snare under endoscopy,and TEF was observed.Gross specimens showed well-formed fistulas with a diameter of 6.11 mm±0.16 mm(range,5.92-6.36 mm),which exceeded that in the control group(P<0.001).Scar formation was observed on the internal surface of fistulas by HE and Masson trichrome staining,and the structure was more regular than that in the control group.CONCLUSION Use of the modified T-shaped magnet scheme is safe and feasible for establishing TEF and can achieve a more stable and uniform fistula size compared with ordinary magnets.Most importantly,this model offers better controllability,which improves the flexibility of follow-up studies.展开更多
BACKGROUND The treatment of postoperative anastomotic stenosis after excision of rectal cancer is challenging.Endoscopic balloon dilation and radial incision are not effective in all patients.We present a new endoscop...BACKGROUND The treatment of postoperative anastomotic stenosis after excision of rectal cancer is challenging.Endoscopic balloon dilation and radial incision are not effective in all patients.We present a new endoscopy-assisted magnetic compression technique(MCT)for the treatment of rectal anastomotic stenosis.We successfully applied this MCT to a patient who developed an anastomotic stricture after radical resection of rectal cancer.A 50-year-old man had undergone laparoscopic radical rectal cancer surgery at a local hospital 5 months ago.A colonoscopy performed 2 months ago indicated that the rectal anastomosis was narrow due to which ileostomy closure could not be performed.The patient came to the Magnetic Surgery Clinic of the First Affiliated Hospital of Xi'an Jiaotong University after learning that we had successfully treated patients with colorectal stenosis using MCT.We performed endoscopy-assisted magnetic compression surgery for rectal stenosis.The magnets were removed 16 d later.A follow-up colonoscopy performed after 4 months showed good anastomotic patency,following which,ileostomy closure surgery was performed.CONCLUSION MCT is a simple,non-invasive technique for the treatment of anastomotic stricture after radical resection of rectal cancer.The technique can be widely used in clinical settings.展开更多
Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine...Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways.However,there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites,which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments,alongside other potential side effects or adverse reactions.Therefore,an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods,clinical pharmacokinetics,and therapeutic drug monitoring of different TKIs.This paper provides a comprehensive overview of the advancements in pretreatment methods,such as protein precipitation(PPT),liquid-liquid extraction(LLE),solid-phase extraction(SPE),micro-SPE(μ-SPE),magnetic SPE(MSPE),and vortex-assisted dispersive SPE(VA-DSPE)achieved since 2017.It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography(HPLC)and high-resolution mass spectrometry(HRMS)methods,capillary electrophoresis(CE),gas chromatography(GC),supercritical fluid chromatography(SFC)procedures,surface plasmon resonance(SPR)assays as well as novel nanoprobes-based biosensing techniques.In addition,a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.展开更多
BACKGROUND Previous studies have validated the efficacy of both magnetic compression and surgical techniques in creating rabbit tracheoesophageal fistula(TEF)models.Magnetic compression achieves a 100%success rate but...BACKGROUND Previous studies have validated the efficacy of both magnetic compression and surgical techniques in creating rabbit tracheoesophageal fistula(TEF)models.Magnetic compression achieves a 100%success rate but requires more time,while surgery,though less frequently successful,offers rapid model establishment and technical maturity in larger animal models.AIM To determine the optimal approach for rabbit disease modeling and refine the process.METHODS TEF models were created in 12 rabbits using both the modified magnetic compression technique and surgery.Comparisons of the time to model establishment,success rate,food and water intake,weight changes,activity levels,bronchoscopy findings,white blood cell counts,and biopsies were performed.In response to the failures encountered during modified magnetic compression modeling,we increased the sample size to 15 rabbit models and assessed the repeatability and stability of the models,comparing them with the original magnetic compression technique.RESULTS The modified magnetic compression technique achieved a 66.7%success rate,whereas the success rate of the surgery technique was 33.3%.Surviving surgical rabbits might not meet subsequent experimental requirements due to TEF-related inflammation.In the modified magnetic compression group,one rabbit died,possibly due to magnet corrosion,and another died from tracheal magnet obstruction.Similar events occurred during the second round of modified magnetic compression modeling,with one rabbit possibly succumbing to aggravated lung infection.The operation time of the first round of modified magnetic compression was 3.2±0.6 min,which was significantly reduced to 2.1±0.4 min in the second round,compared to both the first round and that of the original technique.CONCLUSION The modified magnetic compression technique exhibits lower stress responses,a simple procedure,a high success rate,and lower modeling costs,making it a more appropriate choice for constructing TEF models in rabbits.展开更多
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scannin...Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scanning(Q-scanning)techniques offer notable advantages for various injectors owing to their inherent convenience and cost-effectiveness.However,their stringent approximation conditions lead to inevitable errors in practical operation,thereby limiting their widespread application.This study addressed these challenges by revisiting the analytical derivation procedure and investigating the effects of the underlying approximation conditions.Preliminary corrections were explored through a combination of data processing analysis and numerical simulations.Furthermore,based on theoretical derivations,virtual measurements using beam dynamics calculations were employed to evaluate the correction reliability.Subsequent experimental validations were performed at the Huazhong University of Science and Technology injector to verify the effectiveness of the proposed compensation method.Both the virtual and experimental results confirm the feasibility and reliability of the enhanced Q-scanning-based diagnosis for transverse emittance in typical beam injectors operating under common conditions.Through the integration of these corrections and compensations,enhanced Q-scanning-based techniques emerge as promising alternatives to traditional emittance diagnosis methods.展开更多
BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of th...BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.展开更多
A polarization-sensitive and flexible photodetector was fabricated through the precise alignment of perovskite nanowires(NWs)using a brush coating technique.The alignment of the NWs was meticulously examined,consideri...A polarization-sensitive and flexible photodetector was fabricated through the precise alignment of perovskite nanowires(NWs)using a brush coating technique.The alignment of the NWs was meticulously examined,considering various chemical properties of the solvent,such as boiling point,viscosity,and surface tension.Notably,when the NWs were brush-coated with toluene dispersion,the NWs were aligned in higher order than those processed from octane dispersion.The degree of alignment was correlated with the photodetector property.Especially,the well-aligned NW photodetector exhibited a two-fold disparity in current response contingent on the polarization direction.Furthermore,even after enduring 500 bending cycles,the device retained 80%of its photodetector performance.This approach underscores the potential of solution-processed flexible photodetectors for advanced optical applications under dynamic operating conditions.展开更多
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin...This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.展开更多
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed...With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object...One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.展开更多
文摘Figure 3 in the paper[Chin.Phys.B 34020701(2025)]contains an axis labeling error.The revised figure is provided.This modification does not affect the result presented in the paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82304443,82030107,and 82373944).
文摘Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing factor is the lack of foundational understanding of in vivo processes.Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.However,the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies.Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug,the encapsulated drug,and the nanomaterial,which present a higher level of complexity compared to traditional small-molecule drugs.Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines.This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years.We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1602602 and 2023YFA1609600)the National Natural Science Foundation of China (Grant No. U23A20580)+3 种基金the open research fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN27)Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF004)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120020)the interdisciplinary program of Wuhan National High Magnetic Field Center at Huazhong University of Science and Technology (Grant No. WHMFC202132)。
文摘Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金the Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07Fundamental Research Funds for the Central Universities,No.xzy022023068.
文摘BACKGROUNDThe treatment of postoperative anastomotic stenosis(AS)after resection of colorectalcancer is challenging.Endoscopic balloon dilation is used to treat stenosisin such cases,but some patients do not show improvement even after multipleballoon dilations.Magnetic compression technique(MCT)has been used for gastrointestinalanastomosis,but its use for the treatment of postoperative AS aftercolorectal cancer surgery has rarely been reported.CASE SUMMARYWe report a 72-year-old man who underwent radical resection of colorectal cancerand ileostomy one year ago.An ileostomy closure was prepared six months ago,but colonoscopy revealed a narrowing of the rectal anastomosis.Endoscopic balloondilation was performed three times,but colonoscopy showed no significantimprovement in stenosis.The AS was successfully treated using MCT.CONCLUSIONMCT is a minimally invasive method that can be used for the treatment of postoperativeAS after colorectal cancer surgery.
基金the Key Research&Development Program of Shaanxi Province of China,No.2024SF-YBXM-447the Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07+1 种基金the Fundamental Research Funds for the Central Universities,No.xzy022023068the Natural Science Basic Research Plan in Shaanxi Province of China,No.2020JZ-37.
文摘BACKGROUND Magnetic anchor technique(MAT)has been applied in laparoscopic cholecystectomy and laparoscopic appendectomy,but has not been reported in laparoscopic partial hepatectomy.AIM To evaluate the feasibility of the MAT in laparoscopic left lateral segment liver resection.METHODS Retrospective analysis was conducted on the clinical data of eight patients who underwent laparoscopic left lateral segment liver resection assisted by MAT in our department from July 2020 to November 2021.The Y-Z magnetic anchor devices(Y-Z MADs)was independently designed and developed by the author of this paper,which consists of the anchor magnet and magnetic grasping apparatus.Surgical time,intraoperative blood loss,intraoperative accidents,operator experience,postoperative incision pain score,postoperative complications,and other indicators were evaluated and analyzed.RESULTS All eight patients underwent a MAT-assisted laparoscopic left lateral segment liver resection,including three patients undertaking conventional 5-port and five patients having a transumbilical single-port operation.The mean operation time was 138±34.32 min(range 95-185 min)and the mean intraoperative blood loss was 123±88.60 mL(range 20-300 mL).No adverse events occurred during the operation.The Y-Z MADs showed good workability and maneuverability in both tissue and organ exposure.In particular,the operators did not experience either a“chopstick”or“sword-fight”effect in the single-port laparoscopic operation.CONCLUSION The results show that the MAT is safe and feasible for laparoscopic left lateral segment liver resection,especially,exhibits its unique abettance for transumbilical single-port laparoscopic left lateral segment liver resection.
基金Supported by the Key Research&Development Program of Shaanxi Province of China,No.2024SF-YBXM-447Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07+1 种基金Fundamental Research Funds for the Central Universities,No.xzy022023068Natural Science Foundation of Shaanxi Province,No.2023-JC-QN-0814.
文摘BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model control.We designed a Tshaped magnet system to overcome these problems and verified its effectiveness via animal experiments.AIM To investigate the effectiveness of a T-shaped magnet system for establishing a TEF model in beagle dogs.METHODS Twelve beagles were randomly assigned to groups in which magnets of the Tshaped scheme(study group,n=6)or normal magnets(control group,n=6)were implanted into the trachea and esophagus separately under gastroscopy.Operation time,operation success rate,and accidental injury were recorded.After operation,the presence and timing of cough and the time of magnet shedding were observed.Dogs in the control group were euthanized after X-ray and gastroscopy to confirm establishment of TEFs after coughing,and gross specimens of TEFs were obtained.Dogs in the study group were euthanized after X-ray and gastroscopy 2 wk after surgery,and gross specimens were obtained.Fistula size was measured in all animals,and then harvested fistula specimens were examined by hematoxylin and eosin(HE)and Masson trichrome staining.RESULTS The operation success rate was 100%for both groups.Operation time did not differ between the study group(5.25 min±1.29 min)and the control group(4.75 min±1.70 min;P=0.331).No bleeding,perforation,or unplanned magnet attraction occurred in any animal during the operation.In the early postoperative period,all dogs ate freely and were generally in good condition.Dogs in the control group had severe cough after drinking water at 6-9 d after surgery.X-ray indicated that the magnets had entered the stomach,and gastroscopy showed TEF formation.Gross specimens of TEFs from the control group showed the formation of fistulas with a diameter of 4.94 mm±1.29 mm(range,3.52-6.56 mm).HE and Masson trichrome staining showed scar tissue formation and hierarchical structural disorder at the fistulas.Dogs in the study group did not exhibit obvious coughing after surgery.X-ray examination 2 wk after surgery indicated fixed magnet positioning,and gastroscopy showed no change in magnet positioning.The magnets were removed using a snare under endoscopy,and TEF was observed.Gross specimens showed well-formed fistulas with a diameter of 6.11 mm±0.16 mm(range,5.92-6.36 mm),which exceeded that in the control group(P<0.001).Scar formation was observed on the internal surface of fistulas by HE and Masson trichrome staining,and the structure was more regular than that in the control group.CONCLUSION Use of the modified T-shaped magnet scheme is safe and feasible for establishing TEF and can achieve a more stable and uniform fistula size compared with ordinary magnets.Most importantly,this model offers better controllability,which improves the flexibility of follow-up studies.
基金Supported by The Key Research and Development Program of Shaanxi Province of China,No.2024SF-YBXM-447The Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07The Fundamental Research Funds for the Central Universities,No.xzy022023068。
文摘BACKGROUND The treatment of postoperative anastomotic stenosis after excision of rectal cancer is challenging.Endoscopic balloon dilation and radial incision are not effective in all patients.We present a new endoscopy-assisted magnetic compression technique(MCT)for the treatment of rectal anastomotic stenosis.We successfully applied this MCT to a patient who developed an anastomotic stricture after radical resection of rectal cancer.A 50-year-old man had undergone laparoscopic radical rectal cancer surgery at a local hospital 5 months ago.A colonoscopy performed 2 months ago indicated that the rectal anastomosis was narrow due to which ileostomy closure could not be performed.The patient came to the Magnetic Surgery Clinic of the First Affiliated Hospital of Xi'an Jiaotong University after learning that we had successfully treated patients with colorectal stenosis using MCT.We performed endoscopy-assisted magnetic compression surgery for rectal stenosis.The magnets were removed 16 d later.A follow-up colonoscopy performed after 4 months showed good anastomotic patency,following which,ileostomy closure surgery was performed.CONCLUSION MCT is a simple,non-invasive technique for the treatment of anastomotic stricture after radical resection of rectal cancer.The technique can be widely used in clinical settings.
基金supported by the Natural Science Foundation of Liaoning Province,China(Grant No.:2023-MS-172).
文摘Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways.However,there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites,which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments,alongside other potential side effects or adverse reactions.Therefore,an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods,clinical pharmacokinetics,and therapeutic drug monitoring of different TKIs.This paper provides a comprehensive overview of the advancements in pretreatment methods,such as protein precipitation(PPT),liquid-liquid extraction(LLE),solid-phase extraction(SPE),micro-SPE(μ-SPE),magnetic SPE(MSPE),and vortex-assisted dispersive SPE(VA-DSPE)achieved since 2017.It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography(HPLC)and high-resolution mass spectrometry(HRMS)methods,capillary electrophoresis(CE),gas chromatography(GC),supercritical fluid chromatography(SFC)procedures,surface plasmon resonance(SPR)assays as well as novel nanoprobes-based biosensing techniques.In addition,a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
基金Independent Scientific Research Project for Graduate Students of Beijing University of Chinese Medicine(2023),No.ZJKT2023020.
文摘BACKGROUND Previous studies have validated the efficacy of both magnetic compression and surgical techniques in creating rabbit tracheoesophageal fistula(TEF)models.Magnetic compression achieves a 100%success rate but requires more time,while surgery,though less frequently successful,offers rapid model establishment and technical maturity in larger animal models.AIM To determine the optimal approach for rabbit disease modeling and refine the process.METHODS TEF models were created in 12 rabbits using both the modified magnetic compression technique and surgery.Comparisons of the time to model establishment,success rate,food and water intake,weight changes,activity levels,bronchoscopy findings,white blood cell counts,and biopsies were performed.In response to the failures encountered during modified magnetic compression modeling,we increased the sample size to 15 rabbit models and assessed the repeatability and stability of the models,comparing them with the original magnetic compression technique.RESULTS The modified magnetic compression technique achieved a 66.7%success rate,whereas the success rate of the surgery technique was 33.3%.Surviving surgical rabbits might not meet subsequent experimental requirements due to TEF-related inflammation.In the modified magnetic compression group,one rabbit died,possibly due to magnet corrosion,and another died from tracheal magnet obstruction.Similar events occurred during the second round of modified magnetic compression modeling,with one rabbit possibly succumbing to aggravated lung infection.The operation time of the first round of modified magnetic compression was 3.2±0.6 min,which was significantly reduced to 2.1±0.4 min in the second round,compared to both the first round and that of the original technique.CONCLUSION The modified magnetic compression technique exhibits lower stress responses,a simple procedure,a high success rate,and lower modeling costs,making it a more appropriate choice for constructing TEF models in rabbits.
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
基金supported by the National Natural Science Foundation of China(Nos.12341501 and 11905074)。
文摘Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scanning(Q-scanning)techniques offer notable advantages for various injectors owing to their inherent convenience and cost-effectiveness.However,their stringent approximation conditions lead to inevitable errors in practical operation,thereby limiting their widespread application.This study addressed these challenges by revisiting the analytical derivation procedure and investigating the effects of the underlying approximation conditions.Preliminary corrections were explored through a combination of data processing analysis and numerical simulations.Furthermore,based on theoretical derivations,virtual measurements using beam dynamics calculations were employed to evaluate the correction reliability.Subsequent experimental validations were performed at the Huazhong University of Science and Technology injector to verify the effectiveness of the proposed compensation method.Both the virtual and experimental results confirm the feasibility and reliability of the enhanced Q-scanning-based diagnosis for transverse emittance in typical beam injectors operating under common conditions.Through the integration of these corrections and compensations,enhanced Q-scanning-based techniques emerge as promising alternatives to traditional emittance diagnosis methods.
文摘BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.
基金supported by a Commercialization Promotion Agency for R&D Outcomes(COMPA)Grant funded by the Korean Government(Ministry of Science and ICT)(No.RS-2023-00304743)the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022M3J7A1066428)"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(No.2023RIS-008).
文摘A polarization-sensitive and flexible photodetector was fabricated through the precise alignment of perovskite nanowires(NWs)using a brush coating technique.The alignment of the NWs was meticulously examined,considering various chemical properties of the solvent,such as boiling point,viscosity,and surface tension.Notably,when the NWs were brush-coated with toluene dispersion,the NWs were aligned in higher order than those processed from octane dispersion.The degree of alignment was correlated with the photodetector property.Especially,the well-aligned NW photodetector exhibited a two-fold disparity in current response contingent on the polarization direction.Furthermore,even after enduring 500 bending cycles,the device retained 80%of its photodetector performance.This approach underscores the potential of solution-processed flexible photodetectors for advanced optical applications under dynamic operating conditions.
文摘This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.
基金supported by the National Fund Cultivation Project from China People’s Police University(Grant Number:JJPY202402)National Natural Science Foundation of China(Grant Number:62172165).
文摘With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
基金Supported by the National Natural Science Foundation of China(42474239,41204128)China National Space Administration(Pre-research project on Civil Aerospace Technologies No.D010301)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA17010303)。
文摘One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.