The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three ...The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three Combinations”).However,considering TCM's distinctive features of“syndrome differentiation and treatment”and“multicomponent formulations and complex mechanisms”,current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system.Moreover,significant obstacles persist in gathering human experience data,evaluating clinical efficacy,and controlling the quality of active ingredients,which impede the innovation process in TCM drug development.Network pharmacology,centered on the“network targets”theory,transcends the limitations of the conventional“single target”reductionist research model.It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions.This approach aligns with the holistic perspective of TCM,offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs.It is internationally recognized as a“next-generation drug research model”.To advance the research of new tools,methods,and standards for TCM evaluation and to overcome fundamental,critical,and cutting-edge technical challenges in TCM regulation,this consensus aims to explore the characteristics,progress,challenges,applicable pathways,and specific applications of network pharmacology as a new theory,method,and tool in TCM drug development.The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products.展开更多
Driven by the wave of informatization and intelligence,the smart city has become a new trend of global urban development.The intelligent transformation of energy systems is of great importance to a smart city.The Inte...Driven by the wave of informatization and intelligence,the smart city has become a new trend of global urban development.The intelligent transformation of energy systems is of great importance to a smart city.The Internet helps the sustainable development of smart cities by optimizing resource allocation,improving utilization efficiency,and promoting market competition.This study analyzes the current situation and problems of energy Internet supporting smart cities and finds that policy environment,technology maturity,market demand,and industrial chain integration have a significant positive impact on its development.Based on this,relevant strategies are proposed to provide theoretical and practical guidance for the integrated development of smart cities and the energy Internet.展开更多
Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland ...Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin.展开更多
BACKGROUND First-time mothers may encounter various problems during postpartum,which can result in negative emotions that can affect infant care.In today’s Internet era,continuous nursing services can be provided to ...BACKGROUND First-time mothers may encounter various problems during postpartum,which can result in negative emotions that can affect infant care.In today’s Internet era,continuous nursing services can be provided to mothers and their babies after delivery through Internet-based platforms.This approach can help reduce negative emotions of primiparas and promote better health for both mothers and babies.AIM To explore the effect of Internet Plus-based postpartum healthcare services on postpartum depression of primiparas and neonatal growth and development and thus provide a scientific basis for strengthening postpartum healthcare measures and better protect maternal and child health.METHODS The study retrospectively collected data of primiparas and their newborns who underwent prenatal examination and successfully delivered at the Ninth People’s Hospital of Suzhou City.The observation group included 30 primiparas and their newborns who received Internet Plus-based postpartum healthcare services between July and December 2024.According to the principle of matching(1:1)control study,the control group included 30 primiparas and their newborns who received routine postpartum healthcare services between January and June 2024.The maternal role adaptation questionnaire scores,breastfeeding rates,Edinburgh postnatal depression scale(EPDS)scores,and newborn growth and development(height,head circumference,and weight)were compared between the two groups at the time of discharge after delivery and 6-week postpartum follow-up.RESULTS Upon hospital discharge,the two groups did not demonstrate significant differences in maternal role adaptation scores,breastfeeding rates,EPDS scores,as well as newborn height,head circumference,and weight at birth(P>0.05).At the 6-week postpartum follow-up,the maternal role adaptation score and breastfeeding rate were higher in the observation group than in the control group(P<0.05).In addition,one case of postpartum depression was reported in the observation group and eight in the control group.Moreover,the control group exhibited a significant increase in EPDS scores compared with scores at hospital discharge(P<0.05),whereas the observation group showed only a marginal,nonsignificant increase in EPDS scores(P>0.05).The EPDS score of the observation group was significantly lower than that of the control group(P<0.05),indicating a lower risk of postpartum depression in the observation group.The length,head circumference,and weight of the newborns 6 weeks after birth were increased compared with those at birth,and the growth rate was higher in the observation group than in the control group(P<0.05),indicating better growth and development in the observation group.CONCLUSION Internet Plus-based postpartum healthcare services improve maternal role adaptation,increase breastfeeding rates,mitigate postpartum depression risk,and promote neonatal growth and development in primiparas.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)and their secretome have significant potential in promoting hair follicle development.However,the effects of MSC therapy have been reported to vary due to their heterogeneous cha...BACKGROUND Mesenchymal stem cells(MSCs)and their secretome have significant potential in promoting hair follicle development.However,the effects of MSC therapy have been reported to vary due to their heterogeneous characteristics.Different sources of MSCs or culture systems may cause heterogeneity of exosomes.AIM To define the potential of human adipose-derived MSC exosomes(hADSC-Exos)and human umbilical cord-derived MSC exosomes(hUCMSC-Exos)for improving dermal papillary cell proliferation in androgenetic alopecia.METHODS We conducted liquid chromatography-mass spectrometry proteomic analysis of hADSC-Exos and hUCMSC-Exos.Liquid chromatography-mass spectrometry suggested that hADSC-Exos were related to metabolism and immunity.Additionally,the hADSC-Exo proteins regulated the cell cycle and other 9 functional groups.RESULTS We verified that hADSC-Exos inhibited glycogen synthase kinase-3βexpression by activating the Wnt/β-catenin signaling pathway via cell division cycle protein 42,and enhanced dermal papillary cell proliferation and migration.Excess dihydrotestosterone caused androgenetic alopecia by shortening the hair follicle growth phase,but hADSC-Exos reversed these effects.CONCLUSION This study indicated that hair development is influenced by hADSC-Exo-mediated cell-to-cell communication via the Wnt/β-catenin pathway.展开更多
The use ofrenewable energyisan important way toachieve sustainable agriculturalandeconomic development.However,there are differences in accessto renewable energy between the Global North and Global South.This study ut...The use ofrenewable energyisan important way toachieve sustainable agriculturalandeconomic development.However,there are differences in accessto renewable energy between the Global North and Global South.This study utilisedan autoregressive distributed lag-error correctionmodel and thedata spanning from 1991to 2021 to comparatively analyse the dynamic relationship amongrenewable energy consumption,the value of agricultural production,gross domestic product(GDP),economic diversificationindex,urban population,the total water extraction for agricultural withdrawal,and trade balancein the Netherlands and South Africa.In the shortrun,renewable energy consumption was increased by the value of agricultural productionbut decreased by GDPin South Africa.In the longrun,renewable energy consumption and GDP increased the value of agricultural production,while the value of agricultural production also increased GDP in South Africa.However,in the Netherlands,there was no short-and long-run relationship betweenrenewable energy consumption and agricultural and economic development.The results revealedthat there was a short-and long-run relationship in South Africa.Moreover,in the Netherlands,the adjustment speed was-1.46 forrenewable energy consumption with an error correction of 0.68 a(8.22 months).In South Africa,the adjustment speedwas-1.28 forrenewable energy consumption with an error correction of 0.78 a(9.38 months).Therefore,compared to South Africa,renewable energy consumptionin the Netherlands takes less time to return to balance after a shock.Thesefindings signify different trajectories on sectoral and economic transition initiatives spurred usingrenewable energy between the Netherlands and South Africa.Policy relating to initiatives such as“agro-energy communities”in Global South countries such as South Africa should be emphasised to promote the use of renewable energy in the agricultural sector.展开更多
This research extends the literature on the environmental Phillips curve(EPC)and environmental Kuznets curve(EKC)by focusing on the 38 member economies of the Organization for Economic Co-operation and Development(OEC...This research extends the literature on the environmental Phillips curve(EPC)and environmental Kuznets curve(EKC)by focusing on the 38 member economies of the Organization for Economic Co-operation and Development(OECD).Using panel data from 2000 to 2021,the study employs several econometric techniques,including fixed effects,feasible generalized least squares,two-stage least squares,and the generalized method of moments.Our primary findings reveal that unemployment has a significant negative impact on CO_(2)emissions,thereby supporting the validity of the EPC hypothesis within OECD countries.This suggests a trade-off between unemployment and reductions in CO_(2)emissions.Similarly,the results validate the EKC hypothesis,with further analysis indicating that the EKC exhibits an N-shaped curve-an important contribution to the literature on environmental dynamics in advanced economies.Additionally,the results show that both trade openness and renewable energy usage have significantly improved environmental quality in OECD economies.Finally,extensive causality testing identifies both one-way and two-way causal relationships among the key variables examined.These findings have important policy implications for the management of environmental quality and macroeconomic variables in the OECD context.展开更多
The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the...The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization.展开更多
Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a...Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a lipid-rich myelin sheath,which enables the saltatory conduction of action potentials.During development,oligodendrocyte progenitor cells(OPCs)emerge from neural stem cells in the ventricular zone.They then proliferate,increase their number,and migrate to their final destination where they encounter unmyelinated neuronal axons and differentiate in a stepwise fashion into myelinating oligodendrocytes(mOLs)under the influence of environmental stimuli.展开更多
Coilia nasus,a migratory fish species found in the middle and lower reaches of the Yangtze River and along offshore areas of China,possesses considerable aquacultural and economic potential.However,the species faces c...Coilia nasus,a migratory fish species found in the middle and lower reaches of the Yangtze River and along offshore areas of China,possesses considerable aquacultural and economic potential.However,the species faces challenges due to significant variation in the gonadal development rate among females,resulting in inconsistent ovarian maturation times at the population level,an extended reproductive period,and limitations on fish growth rate due to ovarian prematurity.In the present study,we combined genome-wide association study(GWAS)and comparative transcriptome analysis to investigate the potential single nucleotide polymorphisms(SNPs)and candidate genes associated with population-asynchronous ovarian development in C.nasus.Genotyping of the female population based on whole-genome resequencing yielded 2120695 high-quality SNPs,39 of which were suggestively associated with ovarian development.Of note,a significant SNP peak on LG21 containing 30 suggestively associated SNPs was identified,with cpne5a determined as the causal gene of the peak.Therefore,single-marker and haplotype association analyses were performed on cpne5a,revealing four genetic markers(P<0.05)and seven haplotypes(r2>0.9)significantly associated with the phenotype.Comparative transcriptome analysis of precociously and normally maturing individuals screened out 29 and 426 overlapping differentially expressed genes in the brain and ovary,respectively,between individuals of different body sizes.Integrating the GWAS and transcriptome analysis results,this study identified genes and pathways related to hypothalamic-pituitary-gonadal axis hormone secretion,extracellular matrix,angiogenesis,and gap junctions involved in population-asynchronous ovarian development.The insights gained from this study provide a basis for a deeper understanding of the molecular mechanisms underlying ovarian development in fish and may facilitate the genetic breeding of C.nasus strains exhibiting population-synchronous ovarian development in the future.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
Isocitrate dehydrogenase 2(IDH2)and glutamate dehydrogenase 1(GLUD1)are key enzymes involved in the production ofα-ketoglutarate(α-KG),a metabolite central to the tricarboxylic acid cycle and glutamine metabolism.In...Isocitrate dehydrogenase 2(IDH2)and glutamate dehydrogenase 1(GLUD1)are key enzymes involved in the production ofα-ketoglutarate(α-KG),a metabolite central to the tricarboxylic acid cycle and glutamine metabolism.In this study,we investigated the impact of IDH2 and GLUD1 on early porcine embryonic development following IDH2 and GLUD1 knockdown(KD)via doublestranded RNA(dsRNA)microinjection.Results showed that KD reducedα-KG levels,leading to delayed embryonic development,decreased blastocyst formation,increased apoptosis,reduced blastomere proliferation,and pluripotency.Additionally,IDH2 and GLUD1 KD induced abnormally high levels of trimethylation of lysine 20 of histone H4(H4K20me3)at the 4-cell stage,likely resulting in transcriptional repression of embryonic genome activation(EGA)-related genes.Notably,KD of lysine methyltransferase 5C(KMT5C)and supplementation with exogenousα-KG reduced H4K20me3 expression and partially rescued these defects,suggesting a critical role of IDH2 and GLUD1 in the epigenetic regulation and proper development of porcine embryos.Overall,this study highlights the significance of IDH2 and GLUD1 in maintaining normal embryonic development through their influence onα-KG production and subsequent epigenetic modifications.展开更多
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens...Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
Using the coupled coordination degree model,DEA coupled coordination efficiency model,and spatial autocorrelation model,this study explored the dynamic coupled coordination relationship and spatial correlation between...Using the coupled coordination degree model,DEA coupled coordination efficiency model,and spatial autocorrelation model,this study explored the dynamic coupled coordination relationship and spatial correlation between the ice-snow tourism network attention and tourism industry development in 31 Chinese provinces and proposed suggestions pertaining to development.Our findings showed that(1)most provinces have not yet achieved excellent coordinated development between the two systems,and the coupled coordination efficiency is low.Each province's coupled coordination degree and coordination efficiency exhibited a small increase.(2)Spatial differences in the coupled coordination level and coordination efficiency of the two systems in each province were more evident.In seven provinces,including Heilongjiang,tourism industry development demonstrated a relatively high utilization rate and enhanced ice-snow tourism network attention.(3)The rankings of the coupled coordination degree and coordination efficiency of the two systems in each province remained relatively stable at the upper and lower ends,with large changes in the central provinces.The coupled coordination efficiency of Heilongjiang,Beijing,Jilin,and Shanghai remained at the top of the list steadily,whereas Xizang,Anhui,and Qinghai stayed at the bottom.In contrast,the ranking of the coupled coordination efficiency of Inner Mongolia,Henan,and Jiangsu displayed a great change.(4)The spatial correlation analysis revealed a positive correlation that decreased annually.Some provinces exhibited characteristics of spatial aggregation,with a high-high aggregation effect in Liaoning and Jilin,a low-low aggregation effect in Gansu and Qinghai,and no spatial aggregation effect in most other provinces.展开更多
The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established b...The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.展开更多
Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether...Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.展开更多
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:tho...The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.展开更多
基金supported by the National Medical Products Administration Commissioned Research Project (No.20211440216)the National Administration of Traditional Chinese Medicine Science and Technology Project (No.GZY-KJS-2024-03)+3 种基金the State Key Laboratory of Drug Regulatory Science Project (No.2023SKLDRS0104)the Basic Research Program Natural Science Fund-Frontier Leading Technology Basic Research Special Project of Jiangsu Province (No.BK20232014)the Programs Foundation for Leading Talents in National Administration of Traditional Chinese Medicine of China“Qihuang scholars”Projectthe Tianjin Administration for Market Regulation Science and Technology Key Projects (No.2022-W35)。
文摘The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three Combinations”).However,considering TCM's distinctive features of“syndrome differentiation and treatment”and“multicomponent formulations and complex mechanisms”,current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system.Moreover,significant obstacles persist in gathering human experience data,evaluating clinical efficacy,and controlling the quality of active ingredients,which impede the innovation process in TCM drug development.Network pharmacology,centered on the“network targets”theory,transcends the limitations of the conventional“single target”reductionist research model.It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions.This approach aligns with the holistic perspective of TCM,offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs.It is internationally recognized as a“next-generation drug research model”.To advance the research of new tools,methods,and standards for TCM evaluation and to overcome fundamental,critical,and cutting-edge technical challenges in TCM regulation,this consensus aims to explore the characteristics,progress,challenges,applicable pathways,and specific applications of network pharmacology as a new theory,method,and tool in TCM drug development.The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products.
基金Research and Innovation Team Building Project of Qingdao City University(QCU23TDKJO1)。
文摘Driven by the wave of informatization and intelligence,the smart city has become a new trend of global urban development.The intelligent transformation of energy systems is of great importance to a smart city.The Internet helps the sustainable development of smart cities by optimizing resource allocation,improving utilization efficiency,and promoting market competition.This study analyzes the current situation and problems of energy Internet supporting smart cities and finds that policy environment,technology maturity,market demand,and industrial chain integration have a significant positive impact on its development.Based on this,relevant strategies are proposed to provide theoretical and practical guidance for the integrated development of smart cities and the energy Internet.
基金funded by the National Natural Science Foundation of China(Grant No.42101276)。
文摘Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin.
基金Supported by 2024 Academy Level Research Start up Fund,No.YK202434.
文摘BACKGROUND First-time mothers may encounter various problems during postpartum,which can result in negative emotions that can affect infant care.In today’s Internet era,continuous nursing services can be provided to mothers and their babies after delivery through Internet-based platforms.This approach can help reduce negative emotions of primiparas and promote better health for both mothers and babies.AIM To explore the effect of Internet Plus-based postpartum healthcare services on postpartum depression of primiparas and neonatal growth and development and thus provide a scientific basis for strengthening postpartum healthcare measures and better protect maternal and child health.METHODS The study retrospectively collected data of primiparas and their newborns who underwent prenatal examination and successfully delivered at the Ninth People’s Hospital of Suzhou City.The observation group included 30 primiparas and their newborns who received Internet Plus-based postpartum healthcare services between July and December 2024.According to the principle of matching(1:1)control study,the control group included 30 primiparas and their newborns who received routine postpartum healthcare services between January and June 2024.The maternal role adaptation questionnaire scores,breastfeeding rates,Edinburgh postnatal depression scale(EPDS)scores,and newborn growth and development(height,head circumference,and weight)were compared between the two groups at the time of discharge after delivery and 6-week postpartum follow-up.RESULTS Upon hospital discharge,the two groups did not demonstrate significant differences in maternal role adaptation scores,breastfeeding rates,EPDS scores,as well as newborn height,head circumference,and weight at birth(P>0.05).At the 6-week postpartum follow-up,the maternal role adaptation score and breastfeeding rate were higher in the observation group than in the control group(P<0.05).In addition,one case of postpartum depression was reported in the observation group and eight in the control group.Moreover,the control group exhibited a significant increase in EPDS scores compared with scores at hospital discharge(P<0.05),whereas the observation group showed only a marginal,nonsignificant increase in EPDS scores(P>0.05).The EPDS score of the observation group was significantly lower than that of the control group(P<0.05),indicating a lower risk of postpartum depression in the observation group.The length,head circumference,and weight of the newborns 6 weeks after birth were increased compared with those at birth,and the growth rate was higher in the observation group than in the control group(P<0.05),indicating better growth and development in the observation group.CONCLUSION Internet Plus-based postpartum healthcare services improve maternal role adaptation,increase breastfeeding rates,mitigate postpartum depression risk,and promote neonatal growth and development in primiparas.
基金Supported by the Peak Disciplines(Type IV)of Institutions of Higher Learning in Shanghai and the China Postdoctoral Science Foundation,No.2022M722409.
文摘BACKGROUND Mesenchymal stem cells(MSCs)and their secretome have significant potential in promoting hair follicle development.However,the effects of MSC therapy have been reported to vary due to their heterogeneous characteristics.Different sources of MSCs or culture systems may cause heterogeneity of exosomes.AIM To define the potential of human adipose-derived MSC exosomes(hADSC-Exos)and human umbilical cord-derived MSC exosomes(hUCMSC-Exos)for improving dermal papillary cell proliferation in androgenetic alopecia.METHODS We conducted liquid chromatography-mass spectrometry proteomic analysis of hADSC-Exos and hUCMSC-Exos.Liquid chromatography-mass spectrometry suggested that hADSC-Exos were related to metabolism and immunity.Additionally,the hADSC-Exo proteins regulated the cell cycle and other 9 functional groups.RESULTS We verified that hADSC-Exos inhibited glycogen synthase kinase-3βexpression by activating the Wnt/β-catenin signaling pathway via cell division cycle protein 42,and enhanced dermal papillary cell proliferation and migration.Excess dihydrotestosterone caused androgenetic alopecia by shortening the hair follicle growth phase,but hADSC-Exos reversed these effects.CONCLUSION This study indicated that hair development is influenced by hADSC-Exo-mediated cell-to-cell communication via the Wnt/β-catenin pathway.
基金research supported wholly by the National Research Foundation (NRF) of South Africathe Dutch Research Council (NWO) Project (UID 129352)
文摘The use ofrenewable energyisan important way toachieve sustainable agriculturalandeconomic development.However,there are differences in accessto renewable energy between the Global North and Global South.This study utilisedan autoregressive distributed lag-error correctionmodel and thedata spanning from 1991to 2021 to comparatively analyse the dynamic relationship amongrenewable energy consumption,the value of agricultural production,gross domestic product(GDP),economic diversificationindex,urban population,the total water extraction for agricultural withdrawal,and trade balancein the Netherlands and South Africa.In the shortrun,renewable energy consumption was increased by the value of agricultural productionbut decreased by GDPin South Africa.In the longrun,renewable energy consumption and GDP increased the value of agricultural production,while the value of agricultural production also increased GDP in South Africa.However,in the Netherlands,there was no short-and long-run relationship betweenrenewable energy consumption and agricultural and economic development.The results revealedthat there was a short-and long-run relationship in South Africa.Moreover,in the Netherlands,the adjustment speed was-1.46 forrenewable energy consumption with an error correction of 0.68 a(8.22 months).In South Africa,the adjustment speedwas-1.28 forrenewable energy consumption with an error correction of 0.78 a(9.38 months).Therefore,compared to South Africa,renewable energy consumptionin the Netherlands takes less time to return to balance after a shock.Thesefindings signify different trajectories on sectoral and economic transition initiatives spurred usingrenewable energy between the Netherlands and South Africa.Policy relating to initiatives such as“agro-energy communities”in Global South countries such as South Africa should be emphasised to promote the use of renewable energy in the agricultural sector.
文摘This research extends the literature on the environmental Phillips curve(EPC)and environmental Kuznets curve(EKC)by focusing on the 38 member economies of the Organization for Economic Co-operation and Development(OECD).Using panel data from 2000 to 2021,the study employs several econometric techniques,including fixed effects,feasible generalized least squares,two-stage least squares,and the generalized method of moments.Our primary findings reveal that unemployment has a significant negative impact on CO_(2)emissions,thereby supporting the validity of the EPC hypothesis within OECD countries.This suggests a trade-off between unemployment and reductions in CO_(2)emissions.Similarly,the results validate the EKC hypothesis,with further analysis indicating that the EKC exhibits an N-shaped curve-an important contribution to the literature on environmental dynamics in advanced economies.Additionally,the results show that both trade openness and renewable energy usage have significantly improved environmental quality in OECD economies.Finally,extensive causality testing identifies both one-way and two-way causal relationships among the key variables examined.These findings have important policy implications for the management of environmental quality and macroeconomic variables in the OECD context.
基金“Research on Social Change and Network Society Planning in the Internet of Everything Era”(ID:21BSH005),a project under the National Social Science Fund of China
文摘The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization.
基金supported by grants from the Deutsche Forschungsgemeinschaft(DFG)to MW.
文摘Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a lipid-rich myelin sheath,which enables the saltatory conduction of action potentials.During development,oligodendrocyte progenitor cells(OPCs)emerge from neural stem cells in the ventricular zone.They then proliferate,increase their number,and migrate to their final destination where they encounter unmyelinated neuronal axons and differentiate in a stepwise fashion into myelinating oligodendrocytes(mOLs)under the influence of environmental stimuli.
基金supported by the National Key R&D Program of China(2022YFD2400904)Key R&D Projects in Hubei Province(2022BBA008)+1 种基金Zhenjiang Jinshan TalentsWuhan Yangtze River Characteristic Fish Breeding and Domestication Project。
文摘Coilia nasus,a migratory fish species found in the middle and lower reaches of the Yangtze River and along offshore areas of China,possesses considerable aquacultural and economic potential.However,the species faces challenges due to significant variation in the gonadal development rate among females,resulting in inconsistent ovarian maturation times at the population level,an extended reproductive period,and limitations on fish growth rate due to ovarian prematurity.In the present study,we combined genome-wide association study(GWAS)and comparative transcriptome analysis to investigate the potential single nucleotide polymorphisms(SNPs)and candidate genes associated with population-asynchronous ovarian development in C.nasus.Genotyping of the female population based on whole-genome resequencing yielded 2120695 high-quality SNPs,39 of which were suggestively associated with ovarian development.Of note,a significant SNP peak on LG21 containing 30 suggestively associated SNPs was identified,with cpne5a determined as the causal gene of the peak.Therefore,single-marker and haplotype association analyses were performed on cpne5a,revealing four genetic markers(P<0.05)and seven haplotypes(r2>0.9)significantly associated with the phenotype.Comparative transcriptome analysis of precociously and normally maturing individuals screened out 29 and 426 overlapping differentially expressed genes in the brain and ovary,respectively,between individuals of different body sizes.Integrating the GWAS and transcriptome analysis results,this study identified genes and pathways related to hypothalamic-pituitary-gonadal axis hormone secretion,extracellular matrix,angiogenesis,and gap junctions involved in population-asynchronous ovarian development.The insights gained from this study provide a basis for a deeper understanding of the molecular mechanisms underlying ovarian development in fish and may facilitate the genetic breeding of C.nasus strains exhibiting population-synchronous ovarian development in the future.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金supported by the National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(2022R1A2C300769),Republic of Korea。
文摘Isocitrate dehydrogenase 2(IDH2)and glutamate dehydrogenase 1(GLUD1)are key enzymes involved in the production ofα-ketoglutarate(α-KG),a metabolite central to the tricarboxylic acid cycle and glutamine metabolism.In this study,we investigated the impact of IDH2 and GLUD1 on early porcine embryonic development following IDH2 and GLUD1 knockdown(KD)via doublestranded RNA(dsRNA)microinjection.Results showed that KD reducedα-KG levels,leading to delayed embryonic development,decreased blastocyst formation,increased apoptosis,reduced blastomere proliferation,and pluripotency.Additionally,IDH2 and GLUD1 KD induced abnormally high levels of trimethylation of lysine 20 of histone H4(H4K20me3)at the 4-cell stage,likely resulting in transcriptional repression of embryonic genome activation(EGA)-related genes.Notably,KD of lysine methyltransferase 5C(KMT5C)and supplementation with exogenousα-KG reduced H4K20me3 expression and partially rescued these defects,suggesting a critical role of IDH2 and GLUD1 in the epigenetic regulation and proper development of porcine embryos.Overall,this study highlights the significance of IDH2 and GLUD1 in maintaining normal embryonic development through their influence onα-KG production and subsequent epigenetic modifications.
基金supported by the National Natural Science Foundation of China(52074045,52274074)the Science Fund for Distinguished Young Scholars of Chongqing(CSTB2022NSCQ-JQX0028).
文摘Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by The Science and Technology program of Gansu Province(Grant No.23ZDFA017).
文摘Using the coupled coordination degree model,DEA coupled coordination efficiency model,and spatial autocorrelation model,this study explored the dynamic coupled coordination relationship and spatial correlation between the ice-snow tourism network attention and tourism industry development in 31 Chinese provinces and proposed suggestions pertaining to development.Our findings showed that(1)most provinces have not yet achieved excellent coordinated development between the two systems,and the coupled coordination efficiency is low.Each province's coupled coordination degree and coordination efficiency exhibited a small increase.(2)Spatial differences in the coupled coordination level and coordination efficiency of the two systems in each province were more evident.In seven provinces,including Heilongjiang,tourism industry development demonstrated a relatively high utilization rate and enhanced ice-snow tourism network attention.(3)The rankings of the coupled coordination degree and coordination efficiency of the two systems in each province remained relatively stable at the upper and lower ends,with large changes in the central provinces.The coupled coordination efficiency of Heilongjiang,Beijing,Jilin,and Shanghai remained at the top of the list steadily,whereas Xizang,Anhui,and Qinghai stayed at the bottom.In contrast,the ranking of the coupled coordination efficiency of Inner Mongolia,Henan,and Jiangsu displayed a great change.(4)The spatial correlation analysis revealed a positive correlation that decreased annually.Some provinces exhibited characteristics of spatial aggregation,with a high-high aggregation effect in Liaoning and Jilin,a low-low aggregation effect in Gansu and Qinghai,and no spatial aggregation effect in most other provinces.
文摘The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.
基金supported by the National Natural Science Foundation of China(Nos.22276117 and 22076108)the Science and Technology Innovation Talent Team Project of Shanxi Province(No.202204051002024).
文摘Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
基金supported by the National Natural Science Foundation of China(Grant Nos.32072048 and U2004204)National Key Research and Development Program of China(Grant No.2023YFF1001200)+2 种基金China Rice Research Institute Basal Research Fund(Grant No.CPSIBRF-CNRRI-202404)Academician Workstation of National Nanfan Research Institute(Sanya),Chinese Agricultural Academic Science(CAAS),(Grant Nos.YBXM2422 and YBXM2423)Agricultural Science and Technology Innovation Program of CAAS,China.
文摘The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.