The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion...Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.展开更多
A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydroth...A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydrothermal method.The crystal structure of Fe_(3)O_(4) assemblies are characterized by x-ray diffraction,scanning electron microscopy,and transmission electron microscopy.Moreover,the prepared Fe_(3)O_(4) assemblies are used as a magnetic heat treatment agent,and their heating efficiency is investigated.Compared to solid assembly,hollow lichee-like Fe_(3)O_(4) assembly exhibits a higher specific absorption rate of 116.53 W/g and a shorter heating time,which is ascribed to its higher saturation magnetization,larger initial particle size,and the unique hierarchical hollow structure.Furthermore,the magnetothermal effect is primarily attributed to Neel relaxation.Overall,we propose a facile and convenient approach to enhance the heating efficiency of magnetic nanoparticles by forming hollow hierarchical assemblies.展开更多
The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported...The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported a high-quality genome assembly of G.latifolium.Comparative genome analyses revealed substantial variations in both gene group composition and genomic sequences across 13 cotton genomes,including the expansion of photosynthesis-related gene groups in G.latifolium compared with other races and the pivotal contribution of structural variations(SVs)to G.hirsutum domestication.Based on the resequencing reads and constructed pan-genome of upland cotton,co-selection regions and SVs with significant frequency differences among different populations were identified.Genes located in these regions or affected by these variations may characterize the differences between G.latifolium and other races,and could be involved in maintenance of upland cotton domestication phenotypes.These findings may assist in mining genes for upland cotton improvement and improving the understanding of the genetic basis of upland cotton domestication.展开更多
The Qinghai-Tibet Plateau(QTP)is the highest and one of the most extensive plateaus in the world.Investigating naturalized non-native plant species composition,phylogenetic relationships among naturalized plant specie...The Qinghai-Tibet Plateau(QTP)is the highest and one of the most extensive plateaus in the world.Investigating naturalized non-native plant species composition,phylogenetic relationships among naturalized plant species,and phylogenetic relationships between native and naturalized plant species on the plateau is of great importance.Here,we analyze a comprehensive dataset including all species of native and naturalized vascular plants known to occur in the core part of the QTP.We use net relatedness index(NRI)and nearest taxon index(NTI),which reflect deep and shallow evolutionary histories,respectively,to quantify phylogenetic relatedness among angiosperm species.The QTP included in this study(1,448,815 km^(2))has 9086 and 314 species of native and naturalized non-native vascular plants,respectively.We find that the naturalized angiosperm species are phylogenetically clustered with respect to the species pool including all native and naturalized angiosperm species on the QTP included in this study,regardless of whether NRI or NTI is used.For the eight regions within the QTP included in this study,NRI and NTI of naturalized angiosperms are positive in seven regions with respect to their respective regional species pools,reflecting phylogenetic clustering.Thus,naturalized angiosperm species are a phylogenetically clustered subset of all angiosperm species on the QTP,regardless of whether the studied plateau as a whole or its constituent regions are considered.展开更多
Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensit...Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensitivity to realize fully biomimetic skin.Here,an assembled and welded Ag/W composite nanowire flexible electrode was prepared for body motion monitoring and flexible heaters.This Ag/W composite nanowire flexible electrode has a high transmittance of 90.1%(at 121Ω·sq^(−1) sheet resistance)and a low sheet resistance of 27Ω·sq^(−1)(at 60.1%transmittance).Although the transparency of this electrode is not high,the fluctuation in relative resistance change rate at 10%strain is only 5%after 1000 tensile cycles.It can be employed to monitor human body motions,including bending of fingers,arms,wrists,and throat action.Meanwhile,the Ag/W nanowires composite film heater achieves a steady-state temperature of up to 100℃ at a constant voltage of 3.5 V and an instantaneous heating rate of up to 36.5℃·s^(−1).展开更多
Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change ma...Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems.展开更多
Circularly polarized luminescence(CPL)-active materials have a wide range of technological applications.Traditionally,creating CPL-active materials relies on the use of chiral luminophores.In contrast,supramolecular a...Circularly polarized luminescence(CPL)-active materials have a wide range of technological applications.Traditionally,creating CPL-active materials relies on the use of chiral luminophores.In contrast,supramolecular assembly introduces an innovative and promising strategy for developing CPL-active materials not only from chiral luminophores but also from achiral species.This approach significantly enriches the diversity of CPL-active materials.It also offers an effective means to optimize the performance of CPL-active materials,such as enhancing the asymmetry factor|glum|.Compared to polymers,the assembly of small molecules is generally easier to control.This review systematically summarizes the recent progress and developments in CPL from small-molecule assemblies,particularly focusing on differences,merits,and demerits of three typical assembly modes.The aim is to provide valuable insights for the future development of chiroptical materials.展开更多
Ulva prolifera green tides are becoming aworldwide environmental problem,especially in the Yellow Sea,China.However,the effects of the occurrence of U.prolifera green tides on the community organization and stability ...Ulva prolifera green tides are becoming aworldwide environmental problem,especially in the Yellow Sea,China.However,the effects of the occurrence of U.prolifera green tides on the community organization and stability of surrounding microbiomes have still not been de-termined.Here,the prokaryotic microbial community network stability and assembly char-acteristics were systematically analyzed and compared between the green tide and non-green tide periods.U.prolifera blooms weaken the community complexity and robustness of surrounding microbiomes,increasing fragmentation and decreasing diversity.Bacteria and archaea exhibited distinct community distributions and assembly patterns under the influ-ence of green tides,and bacterial communities were more sensitive to outbreaks of green tides.The bacterial communities exhibited a greater niche breadth and a lower phyloge-netic distance during the occurrence of U.prolifera green tides compared to those during the non-green tide period while archaeal communities remained unchanged,suggesting that the bacterial communities underwent stronger homogeneous selection and more sensitive to green tide blooms than the archaeal communities.Piecewise structural equation model analysis revealed that the different responses of major prokaryotic microbial groups,such as Cyanobacteria,to environmental variables during green tides,were influenced by the variations in pH and nitrate during green tides and correlated with the salinity gradient during the non-green tide period.This study elucidates the response of the adaptability,associations,and stability of surrounding microbiomes to outbreaks of U.prolifera green tides.展开更多
Endometrial injury caused by repeated uterine procedures,infections,inflammation,or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration,thereby diminishing endometrial rece...Endometrial injury caused by repeated uterine procedures,infections,inflammation,or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration,thereby diminishing endometrial receptivity and evidently lowering the live birth,clinical pregnancy,and embryo implantation rates.Currently,safe and effective clinical treatment methods or gene-targeted therapies are unavailable,especially for severe endometrial injury.Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection,rapid proliferation,low immunogenicity,and tumorigenicity,along with their involvement in regulating angiogenesis,immune response,cell apoptosis and proliferation,inflammatory response,and fibrosis,Therefore,these cells and vesicles hold broad potential for application in endometrial repair.This article reviewed recent research on human umbilical cord mesenchymal stem cells as well as their extracellular vesicles in repairing endometrial injury.展开更多
Diazotrophs make important contributions to nitrogen(N) inputs in agricultural ecosystems. However, strong evidence of the effects of conservation tillage(CT) on the coexistence and assembly of soil diazotrophic commu...Diazotrophs make important contributions to nitrogen(N) inputs in agricultural ecosystems. However, strong evidence of the effects of conservation tillage(CT) on the coexistence and assembly of soil diazotrophic community and related mechanisms is lacking. Here, a long-term experiment was conducted to study the impacts of CT on the coexistence and assembly patterns of soil diazotrophic community in Lishu County, Jilin Province, North China. Compared to traditional tillage(control, CK), CT significantly reduced both the N fixation rate in top 0–10 cm soil and the alpha diversity of diazotrophic community while increasing the density of diazotrophic and overall bacterial communities. Conservation tillage also reduced the competitive relationships within the diazotrophic community and enhanced network stability. Furthermore, diazotroph assembly was dominated by deterministic processes(relative influence =68.63%) under CK and stochastic processes(relative influence = 58.82%) under CT. Soil depth and total N(TN) were identified as crucial predictors shaping the assembly processes of diazotrophic community under different tillage practices. The relative influence of stochastic processes on diazotrophic community under CT varied more significantly with increasing soil depth. Overall, tillage practice and soil depth had significant influences on the coexistence and assembly processes of soil diazotrophic community. Moreover, long-term CT may impact the selection of N fixation agents and the specific taxa associated with N fixers. Our results indicated that in CT systems, relatively sufficient nutrient availability led to a reduction in interspecies competition, an increase in network stability, and a greater influence of stochastic processes on community assembly. These findings may help us better understand biological N fixation in sustainable agricultural systems.展开更多
Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite a...Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite advancements in intelligent and digital technologies,assembly process design still heavily relies on manual knowledge reuse,and inefficiencies and inconsistent quality in process documentation are caused.To address the aforementioned issues,this paper proposes a knowledge push method of complex product assembly process design based on distillation model-based dynamically enhanced graph and Bayesian network.First,an initial knowledge graph is constructed using a BERT-BiLSTM-CRF model trained with integrated human expertise and a fine-tuned large language model.Then,a confidence-based dynamic weighted fusion strategy is employed to achieve dynamic incremental construction of the knowledge graph with low resource consumption.Subsequently,a Bayesian network model is constructed based on the relationships between assembly components,assembly features,and operations.Bayesian network reasoning is used to push assembly process knowledge under different design requirements.Finally,the feasibility of the Bayesian network construction method and the effectiveness of Bayesian network reasoning are verified through a specific example,significantly improving the utilization of assembly process knowledge and the efficiency of assembly process design.展开更多
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金financially supported by the National Key Research and Development Program of China(No.2017YFB1002900)the National Natural Science Foundation of China(No.51661145021)+5 种基金the Key Natural Science Program of Jiangsu Province(Nos.BE2022118,BE2021643 and BE2016772)the Traction Project of Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province(No.Q816000217)the Scholarship from Key Laboratory of Modern Optical Technologies of Ministry of Education of Chinathe Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina Prosperity Green Industry Foundation of Ministry of Industry and Information Technologysupported by the open project of synchrotron radiation characterization of chain oriented/stacked polar topology and energy modulation of supramolecules(No.2100982)。
文摘Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.
基金supported by the National Natural Science Foundation of China(Grant No.61975162)Youth Research Foundation of Shanxi Datong University(Grant No.2019Q1)+1 种基金Important R&D Projects of Shanxi Province,China(Grant No.201803D121083)Shanxi Scholarship Council,China(Grant No.2020-135)。
文摘A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydrothermal method.The crystal structure of Fe_(3)O_(4) assemblies are characterized by x-ray diffraction,scanning electron microscopy,and transmission electron microscopy.Moreover,the prepared Fe_(3)O_(4) assemblies are used as a magnetic heat treatment agent,and their heating efficiency is investigated.Compared to solid assembly,hollow lichee-like Fe_(3)O_(4) assembly exhibits a higher specific absorption rate of 116.53 W/g and a shorter heating time,which is ascribed to its higher saturation magnetization,larger initial particle size,and the unique hierarchical hollow structure.Furthermore,the magnetothermal effect is primarily attributed to Neel relaxation.Overall,we propose a facile and convenient approach to enhance the heating efficiency of magnetic nanoparticles by forming hollow hierarchical assemblies.
基金supported by the National Natural Science Foundation of China(32201873)the Key Research and Development Plan of Hubei Province(2023BBB050)。
文摘The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported a high-quality genome assembly of G.latifolium.Comparative genome analyses revealed substantial variations in both gene group composition and genomic sequences across 13 cotton genomes,including the expansion of photosynthesis-related gene groups in G.latifolium compared with other races and the pivotal contribution of structural variations(SVs)to G.hirsutum domestication.Based on the resequencing reads and constructed pan-genome of upland cotton,co-selection regions and SVs with significant frequency differences among different populations were identified.Genes located in these regions or affected by these variations may characterize the differences between G.latifolium and other races,and could be involved in maintenance of upland cotton domestication phenotypes.These findings may assist in mining genes for upland cotton improvement and improving the understanding of the genetic basis of upland cotton domestication.
基金supported by grants from the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20050203)+4 种基金the National Natural Science Foundation of China-Yunnan joint fund to support key projects(U1802232)the Major Program for Basic Research Project of Yunnan Province(202101BC070002)the Yunnan Young&Elite Talents Project(YNWR-QNBJ-2019-033)the Ten Thousand Talents Program of Yunnan Province(202005AB160005)the Chinese Academy of Sciences“Light of West China”Program.
文摘The Qinghai-Tibet Plateau(QTP)is the highest and one of the most extensive plateaus in the world.Investigating naturalized non-native plant species composition,phylogenetic relationships among naturalized plant species,and phylogenetic relationships between native and naturalized plant species on the plateau is of great importance.Here,we analyze a comprehensive dataset including all species of native and naturalized vascular plants known to occur in the core part of the QTP.We use net relatedness index(NRI)and nearest taxon index(NTI),which reflect deep and shallow evolutionary histories,respectively,to quantify phylogenetic relatedness among angiosperm species.The QTP included in this study(1,448,815 km^(2))has 9086 and 314 species of native and naturalized non-native vascular plants,respectively.We find that the naturalized angiosperm species are phylogenetically clustered with respect to the species pool including all native and naturalized angiosperm species on the QTP included in this study,regardless of whether NRI or NTI is used.For the eight regions within the QTP included in this study,NRI and NTI of naturalized angiosperms are positive in seven regions with respect to their respective regional species pools,reflecting phylogenetic clustering.Thus,naturalized angiosperm species are a phylogenetically clustered subset of all angiosperm species on the QTP,regardless of whether the studied plateau as a whole or its constituent regions are considered.
基金supported by the National Natural Science Foundation of China(Nos.51905103,52275177).
文摘Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensitivity to realize fully biomimetic skin.Here,an assembled and welded Ag/W composite nanowire flexible electrode was prepared for body motion monitoring and flexible heaters.This Ag/W composite nanowire flexible electrode has a high transmittance of 90.1%(at 121Ω·sq^(−1) sheet resistance)and a low sheet resistance of 27Ω·sq^(−1)(at 60.1%transmittance).Although the transparency of this electrode is not high,the fluctuation in relative resistance change rate at 10%strain is only 5%after 1000 tensile cycles.It can be employed to monitor human body motions,including bending of fingers,arms,wrists,and throat action.Meanwhile,the Ag/W nanowires composite film heater achieves a steady-state temperature of up to 100℃ at a constant voltage of 3.5 V and an instantaneous heating rate of up to 36.5℃·s^(−1).
基金support from the National Natural Science Foundation of China(No.21878218)the Tianjin Research Innovation Project for Postgraduate Students(No.2023KJ262)+2 种基金the State Grid Corporation of China’s Research Program(No.5419-202019385A)the Fundamental Research Funds for the Central Universities(No.92320006)the Tianjin Key Science and Technology Program(No.18ZXSZSF00030)。
文摘Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems.
基金support from the National Natural Science Foundation of China(52473192)。
文摘Circularly polarized luminescence(CPL)-active materials have a wide range of technological applications.Traditionally,creating CPL-active materials relies on the use of chiral luminophores.In contrast,supramolecular assembly introduces an innovative and promising strategy for developing CPL-active materials not only from chiral luminophores but also from achiral species.This approach significantly enriches the diversity of CPL-active materials.It also offers an effective means to optimize the performance of CPL-active materials,such as enhancing the asymmetry factor|glum|.Compared to polymers,the assembly of small molecules is generally easier to control.This review systematically summarizes the recent progress and developments in CPL from small-molecule assemblies,particularly focusing on differences,merits,and demerits of three typical assembly modes.The aim is to provide valuable insights for the future development of chiroptical materials.
基金supported by the National Key Research and Development Program of China(No.2022YFC2807500)Laoshan Laboratory(No.LSKJ202203201)+1 种基金the National Natural Science Foundation of China(Nos.42206147,42120104006 and 42176111)the Natural Science Foundation of Shandong Province(Nos.ZR2022QD046,ZR2021QD051).
文摘Ulva prolifera green tides are becoming aworldwide environmental problem,especially in the Yellow Sea,China.However,the effects of the occurrence of U.prolifera green tides on the community organization and stability of surrounding microbiomes have still not been de-termined.Here,the prokaryotic microbial community network stability and assembly char-acteristics were systematically analyzed and compared between the green tide and non-green tide periods.U.prolifera blooms weaken the community complexity and robustness of surrounding microbiomes,increasing fragmentation and decreasing diversity.Bacteria and archaea exhibited distinct community distributions and assembly patterns under the influ-ence of green tides,and bacterial communities were more sensitive to outbreaks of green tides.The bacterial communities exhibited a greater niche breadth and a lower phyloge-netic distance during the occurrence of U.prolifera green tides compared to those during the non-green tide period while archaeal communities remained unchanged,suggesting that the bacterial communities underwent stronger homogeneous selection and more sensitive to green tide blooms than the archaeal communities.Piecewise structural equation model analysis revealed that the different responses of major prokaryotic microbial groups,such as Cyanobacteria,to environmental variables during green tides,were influenced by the variations in pH and nitrate during green tides and correlated with the salinity gradient during the non-green tide period.This study elucidates the response of the adaptability,associations,and stability of surrounding microbiomes to outbreaks of U.prolifera green tides.
文摘Endometrial injury caused by repeated uterine procedures,infections,inflammation,or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration,thereby diminishing endometrial receptivity and evidently lowering the live birth,clinical pregnancy,and embryo implantation rates.Currently,safe and effective clinical treatment methods or gene-targeted therapies are unavailable,especially for severe endometrial injury.Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection,rapid proliferation,low immunogenicity,and tumorigenicity,along with their involvement in regulating angiogenesis,immune response,cell apoptosis and proliferation,inflammatory response,and fibrosis,Therefore,these cells and vesicles hold broad potential for application in endometrial repair.This article reviewed recent research on human umbilical cord mesenchymal stem cells as well as their extracellular vesicles in repairing endometrial injury.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA28020202)the National Natural Science Foundation of China (No. 42277336)+3 种基金the Natural Science Foundation of Jiangsu Province, China (No. BK20221561)the China Agriculture Research System (Nos. CARS-03 and CARS52)the National Key Research and Development Program of China (No. 2022YFD1500401)the Jiangsu Agricultural Science and Technology Innovation Fund of China (No. CX(24)1003)。
文摘Diazotrophs make important contributions to nitrogen(N) inputs in agricultural ecosystems. However, strong evidence of the effects of conservation tillage(CT) on the coexistence and assembly of soil diazotrophic community and related mechanisms is lacking. Here, a long-term experiment was conducted to study the impacts of CT on the coexistence and assembly patterns of soil diazotrophic community in Lishu County, Jilin Province, North China. Compared to traditional tillage(control, CK), CT significantly reduced both the N fixation rate in top 0–10 cm soil and the alpha diversity of diazotrophic community while increasing the density of diazotrophic and overall bacterial communities. Conservation tillage also reduced the competitive relationships within the diazotrophic community and enhanced network stability. Furthermore, diazotroph assembly was dominated by deterministic processes(relative influence =68.63%) under CK and stochastic processes(relative influence = 58.82%) under CT. Soil depth and total N(TN) were identified as crucial predictors shaping the assembly processes of diazotrophic community under different tillage practices. The relative influence of stochastic processes on diazotrophic community under CT varied more significantly with increasing soil depth. Overall, tillage practice and soil depth had significant influences on the coexistence and assembly processes of soil diazotrophic community. Moreover, long-term CT may impact the selection of N fixation agents and the specific taxa associated with N fixers. Our results indicated that in CT systems, relatively sufficient nutrient availability led to a reduction in interspecies competition, an increase in network stability, and a greater influence of stochastic processes on community assembly. These findings may help us better understand biological N fixation in sustainable agricultural systems.
基金Supported by National Key Research and Development Program(Grant No.2024YFB3312700)National Natural Science Foundation of China(Grant No.52405541)the Changzhou Municipal Sci&Tech Program(Grant No.CJ20241131)。
文摘Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite advancements in intelligent and digital technologies,assembly process design still heavily relies on manual knowledge reuse,and inefficiencies and inconsistent quality in process documentation are caused.To address the aforementioned issues,this paper proposes a knowledge push method of complex product assembly process design based on distillation model-based dynamically enhanced graph and Bayesian network.First,an initial knowledge graph is constructed using a BERT-BiLSTM-CRF model trained with integrated human expertise and a fine-tuned large language model.Then,a confidence-based dynamic weighted fusion strategy is employed to achieve dynamic incremental construction of the knowledge graph with low resource consumption.Subsequently,a Bayesian network model is constructed based on the relationships between assembly components,assembly features,and operations.Bayesian network reasoning is used to push assembly process knowledge under different design requirements.Finally,the feasibility of the Bayesian network construction method and the effectiveness of Bayesian network reasoning are verified through a specific example,significantly improving the utilization of assembly process knowledge and the efficiency of assembly process design.