期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
Quantum-enriched large-eddy simulation with the incompressible Schrodinger flow
1
作者 Zishuo Han Yue Yang 《Acta Mechanica Sinica》 2025年第1期95-105,共11页
We propose a hybrid quantum-classical method,the quantum-enriched large eddy simulation(QELES),for simulating turbulence.The QELES combines the large-scale motion of the large eddy simulation(LES)and the subgrid motio... We propose a hybrid quantum-classical method,the quantum-enriched large eddy simulation(QELES),for simulating turbulence.The QELES combines the large-scale motion of the large eddy simulation(LES)and the subgrid motion of the incompressible Schrodinger flow(ISF).The ISF is a possible way to be simulated on a quantum computer,and it generates subgrid scale turbu-lent structures to enrich the LES field.The enriched LES field can be further used in turbulent combustion and multi-phase flows in which the subgrid scale motion plays an important role.As a conceptual study,we perform the simulations of ISF and LES separately on a classical computer to simulate decaying homogeneous isotropic turbulence.Then,the QEI ES velocity is obtained by the time matching and the spectral blending methods.The QEL ES achieves significant improvement in predicting the energy spectrum,probaility density functions of velocity and vorticity components,and velocity structure functions,and reconstructs coherent small-scales vortices in the direct numerical simulation(DNS).On the other hand,the vortices in the QELES are less elongated and tangled than those in the DNS,and the magnitude of the third-order structure function in the QELES is less than that in the DNS,due to the diferent constitutive relations in the viscous flow and ISE. 展开更多
关键词 Quantum computing large-eddy simulation Subgrid motion
原文传递
The Probability Density Function Related to Shallow Cumulus Entrainment Rate and Its Influencing Factors in a Large-Eddy Simulation 被引量:3
2
作者 Lei ZHU Chunsong LU +5 位作者 Xiaoqi XU Xin HE Junjun LI Shi LUO Yuan WANG Fan WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期173-187,共15页
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri... The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization. 展开更多
关键词 large-eddy simulation cumulus clouds entrainment rate probability density functions spatial and temporal distribution
在线阅读 下载PDF
Large-eddy Simulation of Near-field Dynamics in a Particle-laden Round Turbulent Jet 被引量:3
3
作者 王兵 张会强 王希麟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第2期162-169,共8页
This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle mo... This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle modulation of turbulence. The particles mainly excite the initial instability of the jet and bring about the earlier breakup of vortex rings in the near-field. The flow fluc- tuating intensity either in the axial or in the radial directions is hence increased by particles. The article also describes the mean velocity modulated by particles. The changing statistical velocity induced by particle modulation implies the effects of modulation of the local flow structures. This study is expected to be useful to the control of two-phase turbulent jets. 展开更多
关键词 large-eddy simulation particle-laden jet turbulence structures jet near-fields two-way coupling
原文传递
Large-eddy structures of turbulent swirling flows and methane-air swirling diffusion combustion 被引量:4
4
作者 Liyuan Hu Lixing Zhou Jian Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期419-424,共6页
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus... Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures. 展开更多
关键词 Swirling combustion . Swirling flows .large-eddy simulation
在线阅读 下载PDF
LARGE-EDDY SIMULATION OF TWO-PHASE REACTING FLOW IN MODEL COMBUSTOR 被引量:1
5
作者 颜应文 赵坚行 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期1-8,共8页
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu... The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible. 展开更多
关键词 two-phase reacting flow large-eddy simulation pollutant emission AFTERBURNER
在线阅读 下载PDF
Aeroacoustic investigation of owl-inspired hybrid trailing-edge serrations
6
作者 Jiaxin Rong Takahiro Shizukuda Hao Liu 《Acta Mechanica Sinica》 2025年第7期168-179,共12页
Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for ae... Owls exhibit remarkably silent flight,largely attributed to trailing-edge(TE)serrations on their wings.Inspired by this biological adaptation,TE serrations have become promising passive-noise-control strategies for aerodynamic devices,including drones and wind turbines.However,conventional designs typically feature single-scale geometries—Such as sawtooth or sinusoidal serrations—that fail to replicate the owl’s inherently dual-scale morphology:Macro-scale waviness formed by feather tips combined with micro-scale morphology.Here,we introduce and evaluate a hybrid TE serration design that incorporates both macro-scale wave patterns and micro-scale fringe-like elements to closely emulate the owl wing structure.Using large-eddy simulations coupled with the Ffowcs Williams-Hawkings acoustic analogy,we assess three configurations:A smooth baseline,a conventional wavy serration,and the proposed hybrid serration.Our results indicate that the hybrid configuration achieves an overall noise reduction of about 12 dB relative to the smooth baseline,surpassing the conventional wavy configuration by approximately 2.5 dB,while preserving aerodynamic performance as measured by lift-to-drag ratio.Flow-field analyses further reveal that dual-scale serrations effectively suppress TE pressure fluctuations,highlighting a key aeroacoustic advantage of the owl-inspired hybrid approach.These insights advance our understanding of bioinspired noisecontrol mechanisms and provide practical guidelines for designing quieter aerodynamic systems. 展开更多
关键词 Aeroacoustics Trailing-edge serrations Owl-inspired design large-eddy simulation Noise reduction
原文传递
Optimal Coupling Height of the Atmosphere and Land Surface——An Earth System Modeling Perspective
7
作者 Shaofeng LIU Xubin ZENG +6 位作者 Yongjiu DAI Hua YUAN Nan WEI Zhongwang WEI Xingjie LU Shupeng ZHANG Michael A.BRUNKE 《Advances in Atmospheric Sciences》 2025年第3期417-426,共10页
In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the... In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories. 展开更多
关键词 surface flux estimate reference height land surface modeling atmosphere-land surface coupling large-eddy simulation
在线阅读 下载PDF
Dynamic load characteristics and wake vortex structure of spiral finned cylinders in cross-flow
8
作者 Hewei Yang Bowen Tang +1 位作者 Ye Tian Wei Tan 《Chinese Journal of Chemical Engineering》 2025年第6期105-115,共11页
In this study,four types of spiral fins with varying parameters were mounted on an upstream cylinder,and the effects of spiral fins on the vibration response of heat exchange tubes and the vortex structure in cross fl... In this study,four types of spiral fins with varying parameters were mounted on an upstream cylinder,and the effects of spiral fins on the vibration response of heat exchange tubes and the vortex structure in cross flow were studied through experiments and numerical simulations.The results indicate a strong dependency of the cylinder's vibration response on the fin parameters.The results indicate that the vibration response and wake structure of the cylinder are significantly influenced by the parameters of the fins.The introduction of a finned cylinder affects both its own vibration amplitude and frequency,as well as the downstream cylinder.The amplitudes of finned cylinders Ⅰ and Ⅲ are reduced by 57.8% and 59.9%,respectively,compared to the bare cylinder.This reduction helps to restrain vibration and diminishes the amplitudes of the downstream cylinder.Although finned cylinder Ⅱ slightly decreases its own vibration,it increases the amplitude of the downstream cylinder by 13.7%.The mean drag coefficient and the root mean square of the lift coefficient of the finned cylinder are higher than those of the bare cylinder when the finned cylinder is positioned upstream.Smaller pitch and larger equivalent diameter will lead to increased drag,resulting in enhanced vortex shedding in the wake,which amplifies the vibrations of the cylinder in that wake.The downstream of finned cylinder Ⅱ has the widest wake and higher vortex strength,and the dynamic load and vibration of the downstream cylinder are increased.The vortex intensity decays faster in the wake of finned cylinder Ⅲ,and the vibration of the downstream cylinder is weaker. 展开更多
关键词 Computational fluid dynamics(CFD) Finned cylinder large-eddy simulation(LES) Numerical simulation TURBULENCE
在线阅读 下载PDF
Evaluation of Subgrid-scale Models in Large-eddy Simulations of Turbulent Flow in a Centrifugal Pump Impeller 被引量:16
9
作者 YANG Zhengjun WANG Fujun ZHOU Peijian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期911-918,共8页
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow fi... The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries. 展开更多
关键词 large-eddy simulation subgrid-scale model dynamic mixed model centrifugal pump
在线阅读 下载PDF
Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without Spark Jet control 被引量:11
10
作者 Yang Guang Yao Yufeng +3 位作者 Fang Jian Gan Tian Li Qiushi Lu Lipeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期617-629,共13页
The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction ... The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted. 展开更多
关键词 large-eddy simulation Shock-wave:Turbulent boundary layer INTERACTION Spark Jet control
原文传递
Scaling law of resolved-scale isotropic turbulence and its application in large-eddy simulation 被引量:6
11
作者 Le Fang Bo Li Li-Peng Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期339-350,共12页
Eddy-damping quasinormal Markovian (EDQNM) theory is employed to calculate the resolved-scale spectrum and transfer spectrum, based on which we investigate the resolved-scale scaling law. Results show that the scali... Eddy-damping quasinormal Markovian (EDQNM) theory is employed to calculate the resolved-scale spectrum and transfer spectrum, based on which we investigate the resolved-scale scaling law. Results show that the scaling law of the resolved-scale turbulence, which is affected by several factors, is far from that of the full-scale turbulence and should be corrected. These results are then applied to an existing subgrid model to improve its performance. A series of simulations are performed to verify the necessity of a fixed scaling law in the subgrid modeling. 展开更多
关键词 Scaling law large-eddy simulation CZZSmodel
在线阅读 下载PDF
Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method 被引量:10
12
作者 Beiji SHI Xiaolei YANG +2 位作者 Guodong JIN Guowei HE Shizhao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第3期305-320,共16页
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ... A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results. 展开更多
关键词 WALL model large-eddy simulation(LES) immersed boundary(IB)method diffuse-interface
在线阅读 下载PDF
Large-eddy simulation of circular cylinder flow at subcritical Reynolds number:Turbulent wake and sound radiation 被引量:3
13
作者 Li Guo Xing Zhang Guowei He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期1-11,共11页
The flows past a number 3900 are simulated circular cylinder at Reynolds using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volum... The flows past a number 3900 are simulated circular cylinder at Reynolds using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier- Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to com- pute the sub-grid stresses. Curie's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctua- tions obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise. 展开更多
关键词 Flows past circular cylinder Aerodynamicnoise large-eddy simulation Unstructured grid Acousticanalogy
在线阅读 下载PDF
Parameterization of Sheared Entrainment in a Well-Developed CBL.Part I:Evaluation of the Scheme through Large-Eddy Simulations 被引量:4
14
作者 Peng LIU Jianning SUN Lidu SHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第10期1171-1184,共14页
The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat ... The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of Ae is derived from the TKE budget in the first- order model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness, The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized Ae and IL thickness agree well with the LES outputs. 展开更多
关键词 large-eddy simulation sheared convective boundary layer entrainment flux ratio inversion layer convectivevelocity scale
在线阅读 下载PDF
Large-eddy Simulation of Bubble-Liquid Confined Jets 被引量:2
15
作者 杨玟 周力行 L.S.Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第4期381-384,共4页
The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid... The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid flow and bubble motion,the shear-generated and bubble-induced liquid turbulence,and indicate much stronger bubble fluctuation than that of the liquid,the enhancement of liquid turbulence by bubbles.Both shear and bubble-liquid interaction are important for the liquid turbulence generation in the case studied. 展开更多
关键词 large-eddy simulation bubble-liquid flow two-phase jet
在线阅读 下载PDF
Large-eddy Simulation of Fluid Flow and Heat Transfer in a Mixing Tee Junction 被引量:2
16
作者 LU Tao WANG Yongwei WANG Kuisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1144-1150,共7页
The temperature fluctuation caused by thermal striping phenomena of hot and cold fluids mixing results in cyclical thermal stress fatigue failure of the pipe wall. Mean temperature difference between hot and cold flui... The temperature fluctuation caused by thermal striping phenomena of hot and cold fluids mixing results in cyclical thermal stress fatigue failure of the pipe wall. Mean temperature difference between hot and cold fluids was often used as thermal load in previous analysis of thermal fatigue failure, thereby the influences of the amplitude and frequency of temperature fluctuation on thermal fatigue failure were neglected. Based on the mechanism of flow and heat transfer which induces thermal fatigue, the turbulent mixing of hot and cold water in a tee junction is simulated with FLUENT platform by using the Large-eddy simulation(LES) turbulent flow model with the sub-grid scale(SGS) model of Smagorinsky-Lilly(SL) to capture the amplitude and frequency of temperature fluctuation. In a simulation case, hot water with temperature of 343.48 K and velocity of 0.15 m/s enters the horizontal main duct with the side length of 100 mm, while cold water with temperature of 296.78 K and velocity of 0.3 m/s enters the vertical branch duct with the side length of 50 mm. The numerical results show that the mean and fluctuating temperatures are in good agreement with the previous experimental data, which describes numerical simulation with high reliability and accuracy; the power spectrum density(PSD) on top wall is higher than that on bottom wall(as the frequency less than 1 Hz), while the PSD on bottom wall is relatively higher than that on top wall (as the frequency of 1-10Hz). The temperature fluctuations in full mixing region of the tee junction can be accurately captured by LES and can provide the theoretical basis for the thermal stress and thermal fatigue analyses. 展开更多
关键词 large-eddy simulation FLOW heat transfer tee junction
在线阅读 下载PDF
Large-eddy simulation of fluid mixing in tee with sintered porous medium 被引量:2
17
作者 王永伟 卢涛 +2 位作者 姜培学 程鹏飞 王奎生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第7期911-922,共12页
Mixing processes of hot and cold fluids in a tee with and without sin- tered copper spheres are simulated by FLUENT using the large-eddy simulation (LES) turbulent flow model and the sub-grid scale (SGS) Smagorins... Mixing processes of hot and cold fluids in a tee with and without sin- tered copper spheres are simulated by FLUENT using the large-eddy simulation (LES) turbulent flow model and the sub-grid scale (SGS) Smagorinsky-Lilly (SL) model with buoyancy. Comparisons of numerical results of the two cases with and without sintered copper spheres show that the porous medium significantly reduces velocity and temper- ature fluctuations because the porous medium can effectively restrict the fluid flow and enhance heat transfer. The porous medium obviously increases the pressure drop in the main duct. The porous medium reduces the power spectrum density (PSD) of tempera- ture fluctuations in the frequency range from 1 Hz to 10 Hz. 展开更多
关键词 large-eddy simulation MIXING TEE sintered porous medium
在线阅读 下载PDF
Advances in Large-eddy Simulation of Two-phase Combustion (I) LES of Spray Combustion 被引量:2
18
作者 周力行 李科 王方 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期205-211,共7页
Spray combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering. In recent years, large-eddy simulation (LES) becomes more and mo... Spray combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering. In recent years, large-eddy simulation (LES) becomes more and more attractive, because it can give the instantaneous flow and flame structures, and may give more accurate statistical results than the Reynolds averaged Navier-Stokes (RANS) modeling. In this paper, the present status of the studies on LES of spray combustion is reviewed, and the future research needs are discussed. 展开更多
关键词 spray combustion large-eddy simulation sub-gnd scale model
在线阅读 下载PDF
Large-Eddy Simulation of Wind Turbine Wake and Aerodynamic Performance with Actuator Line Method 被引量:2
19
作者 Qian Yaoru Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期26-36,共11页
A hybrid method is presented to numerically investigate the wind turbine aerodynamic characteristics.The wind turbine blade is replaced by an actuator line model.Turbulence is treated using a dynamic one-equation subg... A hybrid method is presented to numerically investigate the wind turbine aerodynamic characteristics.The wind turbine blade is replaced by an actuator line model.Turbulence is treated using a dynamic one-equation subgrid-scale model in large eddy simulation.Detailed information on the basic characteristics of the wind turbine wake is obtained and discussed.The rotor aerodynamic performance agrees well with the measurements.The actuator line method large-eddy simulation(ALM-LES)technique demonstrates its high potential in providing accurate load prediction and high resolution of turbulent fluctuations in the wind turbine wakes and the interactions within a feasible cost. 展开更多
关键词 actuator line large-eddy simulation(LES) wind turbine WAKE
在线阅读 下载PDF
Recent improvements of actuator line-large-eddy simulation method for wind turbine wakes 被引量:3
20
作者 Zhiteng GAO Ye LI +2 位作者 Tongguang WANG Shitang KE Deshun LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第4期511-526,共16页
In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake d... In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction. 展开更多
关键词 actuator line(AL)method large-eddy simulation(LES) WAKE tip vortex wind turbine
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部