期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An ECT System Based on Improved RBF Network and Adaptive Wavelet Image Enhancement for Solid/Gas Two-phase Flow 被引量:3
1
作者 陈夏 胡红利 +1 位作者 张娟 周屈兰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期359-367,共9页
Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measure... Electrical capacitance tomography(ECT) is a non-invasive imaging technique that aims at visualizing the cross-sectional permittivity distribution and phase distribution of solid/gas two-phase flow based on the measured capacitance.To solve the nonlinear and ill-posed inverse problem:image reconstruction of ECT system,this paper proposed a new image reconstruction method based on improved radial basis function(RBF) neural network combined with adaptive wavelet image enhancement.Firstly,an improved RBF network was applied to establish the mapping model between the reconstruction image pixels and the capacitance values measured.Then,for better image quality,adaptive wavelet image enhancement technique was emphatically analyzed and studied,which belongs to a space-frequency analysis method and is suitable for image feature-enhanced.Through multi-level wavelet decomposition,edge points of the image produced from RBF network can be determined based on the neighborhood property of each sub-band;noise distribution in the space-frequency domain can be estimated based on statistical characteristics;after that a self-adaptive edge enhancement gain can be constructed.Finally,the image is reconstructed with adjusting wavelet coefficients.In this paper,a 12-electrode ECT system and a pneumatic conveying platform were built up to verify this image reconstruction algorithm.Experimental results demonstrated that adaptive wavelet image enhancement technique effectively implemented edge detection and image enhancement,and the improved RBF network and adaptive wavelet image enhancement hybrid algorithm greatly improved the quality of reconstructed image of solid/gas two-phase flow [pulverized coal(PC)/air]. 展开更多
关键词 electrical capacitance tomography.image reconstruction radial basis function network wavelet imageenhance ment
在线阅读 下载PDF
像增强器视场缺陷检测方法研究 被引量:3
2
作者 许正光 王霞 +2 位作者 王吉晖 金伟其 白廷柱 《应用光学》 CAS CSCD 2005年第3期12-15,共4页
 在数字式像增强器性能综合检测系统的基础上,研究了像增强器视场缺陷的检测方法。通过数字视频摄像机采集缺陷图像,利用数字图像处理方法确定缺陷性质,缺陷处理算法基于图像灰度特征而不是边缘特征提取。该方法适用于对检测对象有具...  在数字式像增强器性能综合检测系统的基础上,研究了像增强器视场缺陷的检测方法。通过数字视频摄像机采集缺陷图像,利用数字图像处理方法确定缺陷性质,缺陷处理算法基于图像灰度特征而不是边缘特征提取。该方法适用于对检测对象有具体量化和定位要求,而不是简单的只有数量和形状特征要求的场合。实验表明,该检测方法能够较准确地检测像增强器的缺陷。 展开更多
关键词 像增强器 视场缺陷检测 区域标记 图像阈值化 小斑点去除
在线阅读 下载PDF
涉外导游词中文化意象的传递与移情策略分析 被引量:4
3
作者 吴敏 《华东交通大学学报》 2011年第5期109-113,共5页
随着入境旅游的不断发展,涉外导游词的创作研究已提上日程。通过对涉外导游词的部分案例进行对比分析,尤其是涉外导游在语言、文化、意象等方面的传递方式和涉外导游词的创作过程探讨,发现涉外导游词中文化意象可以经过涉外导游思维的... 随着入境旅游的不断发展,涉外导游词的创作研究已提上日程。通过对涉外导游词的部分案例进行对比分析,尤其是涉外导游在语言、文化、意象等方面的传递方式和涉外导游词的创作过程探讨,发现涉外导游词中文化意象可以经过涉外导游思维的取舍与加工,融入自己独特的审美感受,进行灵活的移情策略选择来传递和重构。 展开更多
关键词 涉外导游词 文化意象 移情策略
在线阅读 下载PDF
基于稀疏编码的数字视频图像压缩方法研究 被引量:1
4
作者 张舒野 《吉林大学学报(信息科学版)》 2024年第6期1011-1017,共7页
针对数字视频图像采集过程中受外部环境噪声干扰及原始图像分辨率低的影响,在压缩过程中可能出现很多的失真和伪影,并且每次压缩和解压缩都会引入一定的误差,误差逐渐积累,导致最终的压缩效果较差的问题,提出基于稀疏编码的数字视频图... 针对数字视频图像采集过程中受外部环境噪声干扰及原始图像分辨率低的影响,在压缩过程中可能出现很多的失真和伪影,并且每次压缩和解压缩都会引入一定的误差,误差逐渐积累,导致最终的压缩效果较差的问题,提出基于稀疏编码的数字视频图像压缩方法研究。利用多阈值迭代方法对数字视频图像中的噪声实施去除,利于后续的图像压缩处理;通过稀疏编码方法获取去噪后的数字视频图像的正交基系数,对该系数进行冗余字典稀疏编码和压缩传输,建立多帧去压缩伪影网络,利用网络中的运动补偿模块对数字视频图像实施运动偏移估计以及像素补偿;将运动补偿帧输入去压缩伪影模块中完成压缩伪影的消除,实现数字视频图像压缩。实验结果验证该方法能有效去除压缩数字视频图像中的伪影,具有较高的压缩效率和信噪比。 展开更多
关键词 稀疏编码 数字视频图像压缩 图像去噪 小波变换 去压缩伪影
在线阅读 下载PDF
Deep learning methods for noisy sperm image classification from convolutional neural network to visual transformer:a comprehensive comparative study
5
作者 Ao Chen Chen Li +9 位作者 Md Mamunur Rahaman Yudong Yao Haoyuan Chen Hechen Yang Peng Zhao Weiming Hu Wanli Liu Shuojia Zou Ning Xu Marcin Grzegorzek 《Intelligent Medicine》 EI CSCD 2024年第2期114-127,共14页
Background With the gradual increase of infertility in the world,among which male sperm problems are the main factor for infertility,more and more couples are using computer-assisted sperm analysis(CASA)to assist in t... Background With the gradual increase of infertility in the world,among which male sperm problems are the main factor for infertility,more and more couples are using computer-assisted sperm analysis(CASA)to assist in the analysis and treatment of infertility.Meanwhile,the rapid development of deep learning(DL)has led to strong results in image classification tasks.However,the classification of sperm images has not been well studied in current deep learning methods,and the sperm images are often affected by noise in practical CASA applications.The purpose of this article is to investigate the anti-noise robustness of deep learning classification methods applied on sperm images.Methods The SVIA dataset is a publicly available large-scale sperm dataset containing three subsets.In this work,we used subset-C,which provides more than 125,000 independent images of sperms and impurities,including 121,401 sperm images and 4,479 impurity images.To investigate the anti-noise robustness of deep learning classification methods applied on sperm images,we conducted a comprehensive comparative study of sperm images using many convolutional neural network(CNN)and visual transformer(VT)deep learning methods to find the deep learning model with the most stable anti-noise robustness.Results This study proved that VT had strong robustness for the classification of tiny object(sperm and impurity)image datasets under some types of conventional noise and some adversarial attacks.In particular,under the influence of Poisson noise,accuracy changed from 91.45%to 91.08%,impurity precison changed from 92.7%to 91.3%,impurity recall changed from 88.8%to 89.5%,and impurity F1-score changed 90.7%to 90.4%.Meanwhile,sperm precision changed from 90.9%to 90.5%,sperm recall changed from 92.5%to 93.8%,and sperm F1-score changed from 92.1%to 90.4%.Conclusion Sperm image classification may be strongly affected by noise in current deep learning methods;the robustness with regard to noise of VT methods based on global information is greater than that of CNN methods based on local information,indicating that the robustness with regard to noise is reflected mainly in global information. 展开更多
关键词 Computer-assisted sperm analysis ANTI-NOISE Robustness Deep learning .image classification Sperm image Conventional noise Adversarial attacks Convolutional neural network Visual transformer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部