Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has alw...Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%.展开更多
This work presents particle-based numerical simulations on coal pillars in a coal mine based underground water reservoir(CMUWR).We aim to replicate the stress-strain characteristics and present the acoustic emission b...This work presents particle-based numerical simulations on coal pillars in a coal mine based underground water reservoir(CMUWR).We aim to replicate the stress-strain characteristics and present the acoustic emission behavior of the coal under complex dynamic stress paths.The study reveals failure characteristics of coal exposed to monotonic/cyclic shear load under constant/cyclic normal loads.Based on the evolution of stress-time-dependent bond diameter implemented in particle model,different damage paths are established for dry and water-immersed samples under two loading frequencies.Furthermore,the numerical Gutenberg-Richter's b-value was calculated from the released energy emanating from bond failure,and this work presents the evolution of numerical Gutenberg-Richter's b-value.The numerical simulation contributes to a micromechanical understanding of the failure mechanisms of coal under water-immersion and cyclic stress,providing valuable insights for strength prediction of CMUWR.展开更多
A slip-line field theory of transversely isotropic body is proposed in the presentpaper in order to deal with problems in geology and geotechniques.The Goldenblat-Kopnov failure criterion is employed.The parameters in...A slip-line field theory of transversely isotropic body is proposed in the presentpaper in order to deal with problems in geology and geotechniques.The Goldenblat-Kopnov failure criterion is employed.The parameters in it are treated as functions of tempperature It is applicable to transverse isotropic media in non-uniform temperaturefield.The basic equtions of plastic deformation are developed while the associated ru-les of flow are derived.By means of characteristic line theory,slip-line slope formulasand laws of variation of stress and velocity along slip lines are obtained,The indenta-tion on semi-infinite media is calculated.The theory developed in this paper may be simplified into many classical theories such as Mises,Hill,and Coulomb ones,This complicated theory may be applied to geotechniques,geological structures,petroleumindustry,mining engineering,etc.展开更多
基金funded by National Natural Science Foundation of China(52074300)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)+1 种基金China University of Mining and Technology(Beijing)fundamental scientific research funds—Doctoral students Top-notch Innovative Talents Fostering Funds(BBJ2023047)Guizhou Provincial Science and Technology Planning Project([2020]2Y030)。
文摘Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%.
基金funded by Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(GJNY-20-113-03)Funds from NSFC(52204086)+2 种基金Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining(EC2021004)Funds from State Key Laboratory of Coal Resources in Western China(SKLCRKF20-07)Fund from Alexander von Humboldt Stiftung.
文摘This work presents particle-based numerical simulations on coal pillars in a coal mine based underground water reservoir(CMUWR).We aim to replicate the stress-strain characteristics and present the acoustic emission behavior of the coal under complex dynamic stress paths.The study reveals failure characteristics of coal exposed to monotonic/cyclic shear load under constant/cyclic normal loads.Based on the evolution of stress-time-dependent bond diameter implemented in particle model,different damage paths are established for dry and water-immersed samples under two loading frequencies.Furthermore,the numerical Gutenberg-Richter's b-value was calculated from the released energy emanating from bond failure,and this work presents the evolution of numerical Gutenberg-Richter's b-value.The numerical simulation contributes to a micromechanical understanding of the failure mechanisms of coal under water-immersion and cyclic stress,providing valuable insights for strength prediction of CMUWR.
文摘A slip-line field theory of transversely isotropic body is proposed in the presentpaper in order to deal with problems in geology and geotechniques.The Goldenblat-Kopnov failure criterion is employed.The parameters in it are treated as functions of tempperature It is applicable to transverse isotropic media in non-uniform temperaturefield.The basic equtions of plastic deformation are developed while the associated ru-les of flow are derived.By means of characteristic line theory,slip-line slope formulasand laws of variation of stress and velocity along slip lines are obtained,The indenta-tion on semi-infinite media is calculated.The theory developed in this paper may be simplified into many classical theories such as Mises,Hill,and Coulomb ones,This complicated theory may be applied to geotechniques,geological structures,petroleumindustry,mining engineering,etc.