期刊文献+
共找到41,434篇文章
< 1 2 250 >
每页显示 20 50 100
MGDE-UNet:轻量化光伏电池缺陷分割模型
1
作者 王涛 黎远松 +2 位作者 石睿 陈慧宁 侯宪庆 《广西师范大学学报(自然科学版)》 北大核心 2026年第1期45-55,共11页
针对光伏电池缺陷分割模型存在计算复杂度高、参数量大、分割速度慢和分割精度低的问题,本文提出一种基于轻量化改进U-Net的光伏电池缺陷分割模型。首先,使用MobitNetV3_Large网络替换原U-Net的主干网络,在减少模型计算量和参数量的同时... 针对光伏电池缺陷分割模型存在计算复杂度高、参数量大、分割速度慢和分割精度低的问题,本文提出一种基于轻量化改进U-Net的光伏电池缺陷分割模型。首先,使用MobitNetV3_Large网络替换原U-Net的主干网络,在减少模型计算量和参数量的同时,保留原网络的特征提取能力。其次,将DynamicConv模块融入GhostConv模块,设计出G-DConv模块,替换原U-Net上采样部分使用的普通卷积模块,在最大化减少网络参数和计算量的同时,提升模型的推理速度。最后,通过在网络上采样后引入ECA注意力机制,减少复杂背景对检测效果的干扰。实验结果表明,该模型的参数量仅为2.43×106,计算量仅为3.03×109,推理速度达到61 frame/s。相比基准模型,改进后的模型MIoU和MPA分别提升0.12个百分点和2.17个百分点,满足工业设备部署要求。 展开更多
关键词 光伏电池 U-net 轻量化 语义分割 ECA
在线阅读 下载PDF
融合部分卷积和ECA机制的轴承滚子外观缺陷U-Net分割模型
2
作者 顾云鹏 马超 +2 位作者 臧绍飞 于朋洋 马建伟 《轴承》 北大核心 2026年第1期91-99,共9页
针对传统图像处理和人工检测方法在复杂、多样的滚子外观缺陷检测中效率低下和精度不高的问题,提出一种融合部分卷积和高效通道注意力机制(ECA)的U-Net模型。首先,针对原始U-Net解码阶段不同尺度特征的融合与重复使用产生冗余特征的问题... 针对传统图像处理和人工检测方法在复杂、多样的滚子外观缺陷检测中效率低下和精度不高的问题,提出一种融合部分卷积和高效通道注意力机制(ECA)的U-Net模型。首先,针对原始U-Net解码阶段不同尺度特征的融合与重复使用产生冗余特征的问题,设计一种融合部分卷积的解码器,缓解冗余特征对模型的负面影响并提高模型的计算效率;其次,在解码器部分引入ECA,自适应建立通道之间的信息交互,增强模型捕捉和理解图像重要特征的能力;最后,针对轴承滚子外观检测任务易出现样本不均衡问题,设计一种融合Focal Loss的损失函数以监督训练模型,减轻样本不均衡对模型的负面影响。在轴承滚子缺陷数据集上的试验结果表明,所提模型在各评估指标上均达到了较高精度,验证了其有效性和可行性。 展开更多
关键词 滚动轴承 滚子 卷积 解码器 损失函数 注意力机制 U-net
在线阅读 下载PDF
基于Mamba-UNet架构的3D MRI脑肿瘤分割方法
3
作者 张野 牛大田 《计算机应用研究》 北大核心 2026年第1期305-312,共8页
多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,提出了基于Mamba与U-Net融合架构的PhC-ToMamba分割模型。模型在瓶颈层嵌入了ToM模块旨... 多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,提出了基于Mamba与U-Net融合架构的PhC-ToMamba分割模型。模型在瓶颈层嵌入了ToM模块旨在有效建模高维特征的全局信息,通过从三个方向计算特征依赖关系并交互,提取更适用于三维图像的全局特征信息;此外,为进一步提升全局特征的提取能力,提出了一种新的多面体卷积(PhConv),并将其嵌入至编码器中,显著扩大了感受野,并提升对重点目标区域的特征提取能力,有效解决了当前主流脑肿瘤图像分割模型对全局信息感知的局限性问题,增强了对关键区域的关注度。在BraTS 2021和MSD Task01_BrainTumor数据集上进行了广泛的实验。实验结果显示,PhC-ToMamba在整个肿瘤、肿瘤核心和增强肿瘤分割任务中的Dice系数分别达到了95.05%/90.46%、94.53%/89.91%和90.74%/75.91%。与其他先进方法相比,PhC-ToMamba在分割精度和参数效率方面展现了优越性,为脑肿瘤分割任务提供稳健的解决方案,从而提高了诊断准确性。 展开更多
关键词 深度学习 MRI脑肿瘤分割 多面体卷积 三维U-net Mamba
在线阅读 下载PDF
基于NET Web开发技术的电网运营管理与自动化监测研究
4
作者 潘鸿飞 刑应春 +2 位作者 王喜银 尹晨旭 曹洁 《自动化技术与应用》 2026年第1期171-175,共5页
以往电网的运营涉及很多不确定性因素而影响了电网运营监测的状态分析过程,导致监测结果准确度不高影响了电网运营管理效果。为此提出了基于NET Web开发技术的电网运营管理与自动化监测方法。该方法首先深入分析电网发电与供电环节的不... 以往电网的运营涉及很多不确定性因素而影响了电网运营监测的状态分析过程,导致监测结果准确度不高影响了电网运营管理效果。为此提出了基于NET Web开发技术的电网运营管理与自动化监测方法。该方法首先深入分析电网发电与供电环节的不确定性因素,通过定量计算构建综合性管理指标。随后,运用NET Web开发技术构建数据处理架构,有效访问电网运营数据。进而,通过解析数据的经验谱分布函数值,实现对电网运营的自动化监测。实验结果表明,此方法能准确监测电网运营状态,有效满足电网运营管理需求。本研究不仅提升了电网运营的监测精度,也为电网的自动化管理提供有力支持,对提升电网运营效率具有重要意义。 展开更多
关键词 电网运营 自动化监测 net Web 程序开发技术
在线阅读 下载PDF
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
5
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration Deep-learning prediction U-net model CFSv2 NorCPM
在线阅读 下载PDF
基于PLP-net轻量化模型的马铃薯捡拾收获中杂质检测方法 被引量:1
6
作者 潘志国 邱保华 +4 位作者 杨然兵 张还 张健 李莹莹 邓志熙 《农业工程学报》 北大核心 2025年第12期208-218,共11页
针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)... 针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)注意力机制强化关键特征提取能力,并采用Focal-DIoU损失函数(focal and distance-IoU loss)优化边界框回归过程来解决数据集中杂质样本失衡的问题,构建基础模型PL-net。然后,基于模型稀疏化训练结果,精确剪除冗余通道,有效缩减运算量及内存占用,提升模型实时性,后经微调训练后构建PLP-net轻量化模型。为实现工程化应用,该研究采用TensorRT推理部署框架将PLP-net部署至嵌入式设备,并基于PyQt5(Python Qt5 binding)框架开发了可视化交互系统以满足马铃薯杂质检测的生产需求。试验结果表明:与YOLOv8n模型相比,PLP-net在计算效率方面明显提升,浮点运算量降低7.2 G,模型体积压缩2.1 MB,推理速度提升99.4帧/s。使用TensorRT加速和未使用TensorRT加速的PLP-net模型相较于YOLOv8n分别提升18.4帧/s和11.4帧/s。PLP-net模型可为后续马铃薯杂质智能分拣提供技术支撑。 展开更多
关键词 马铃薯杂质 PLP-net 轻量化 模型剪枝 模型部署
在线阅读 下载PDF
MC-Res2UNet网络在盐体识别中的应用 被引量:1
7
作者 王新 张傲 +1 位作者 张薇 陈同俊 《石油地球物理勘探》 北大核心 2025年第1期21-29,共9页
精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改... 精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改进。首先,使用Res2Net网络作为编码器提取盐体特征信息;然后,在解码层中的卷积之后引入CBAM注意力模块重新分配盐体空间信息和通道信息,抑制不重要的信息;最后,利用多尺度特征融合模块融合空间信息和语义信息,提高盐体识别精度。将文中提出的MC-Res2UNet模型用于TGS盐体数据集进行验证,像素准确率可达到96.6%,交并比可达到86.8%,优于传统的DeepLabV3+、DANet等语义分割方法,对地下盐体有更好的识别效果。 展开更多
关键词 盐体识别 U-net 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究 被引量:1
8
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 U-net网络 CANNY边缘检测算法
在线阅读 下载PDF
基于改进U-Net的煤矸图像分割模型与放煤控制技术 被引量:2
9
作者 袁永 秦正寒 +3 位作者 夏永琪 武让 李立宝 李勇 《煤炭学报》 北大核心 2025年第5期2722-2738,共17页
煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开... 煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开采相似模拟平台,基于该平台建立了煤矸图像采集系统,采集构建了高清仿真综放工作面煤矸图像数据集,提出一种基于特征金字塔网络(FPN)和空洞空间金字塔池化(ASPP)的改进U-Net煤矸分割模型,提高了煤矸图像的分割精度。通过在U-Net模型的跳跃连接中添加FPN模块,同时在解码器部分引入ASPP模块,建立了FPN-ASPP-U-Net煤矸分割模型,消融试验验证了FPN模块和ASPP模块对U-Net模型性能的提升。结果表明:FPN-ASPP-U-Net模型分割效果最好,均准确率(M_(A))为97.29%,均F1得分(M_(F1))为97.44%,均交并比(M_(I))为95.65%,模型参数量(M_(P))为29.64 M,浮点运算量(F)为341.29 G,每秒帧数(f)为41.1 f/s,与U-Net模型相比,M_(I)、M_(F1)和M_(A)分别提升了2.64%、1.06%和1.15%,模型参数量仅仅增加了0.33 M,改进后的模型在图像分割速度上有少量提升。设计了FPN-ASPP-U-Net模型与PSPNet、SegFormer、DeepLabV3+、PSANet语义分割模型的图像分割效果对比试验,结果表明:FPN-ASPP-U-Net模型对煤矸图像分割的性能最好,同时模型整体计算参数量最小,在分割精度和分割速度之间有着较好的平衡。对于粉尘影响下的不清晰图像,采用暗通道与高斯加权相结合的方法对图像数据集进行去雾增强,轻度粉尘、中度粉尘、重度粉尘去雾前后的模型对煤的分割精度提高了14.81%、17.79%、23.62%,对矸的分割精度提高了11.73%、14.50%、14.86%。基于研究结论提出了FPN-ASPP-U-Net模型的煤矸图像混矸率计算方法,开展了煤矸图像分割控制放煤试验,以混矸率20%作为放煤口关闭的阈值,单次放煤口开关期间真实混矸率与模型预测混矸率平均误差率为4.71%,验证了基于煤矸图像混矸率对放煤控制的可行性。最后,封装模型代码研发了煤矸图像智能识别软件,设计了煤矸分割现场应用方案,在榆树田煤矿110501综放工作面进行了图像控制放煤试验,验证了该方法能够对煤矸图像进行精准分割,对放煤口开关进行合理控制,提高了综放工作面的智能化水平,为推动煤矿进一步智能化建设提供了有效的技术手段与参考价值。 展开更多
关键词 放顶煤 煤矸识别 图像分割 混矸率 U-net模型
在线阅读 下载PDF
基于空洞卷积U-Net的遥感影像道路提取方法 被引量:2
10
作者 林娜 张小青 +2 位作者 王岚 冯丽蓉 王伟 《测绘地理信息》 2025年第3期63-67,共5页
针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,本文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法。首先,以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;其次,为了... 针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,本文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法。首先,以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;其次,为了进一步提高网络对道路细节特征的识别能力,在U-Net中引入空洞卷积模块,学习更多语义信息来改善提取结果的模糊问题;最后,基于Massachusetts Roads数据集进行实验。结果表明,本文方法召回率、精度和F1得分分别达到82.5%、86.7%、84.5%。与基础的UNet相比,本文算法在解决细节特征丢失和提取结果模糊问题方面更具有应用价值。 展开更多
关键词 遥感影像 U-net 道路提取 空洞卷积 深度学习
原文传递
基于深度残差U-Net网络的海上地震混采数据分离技术研究
11
作者 梁兵 郭廷超 +2 位作者 许冲 鲍伟 潘成磊 《海洋地质前沿》 北大核心 2025年第10期28-37,共10页
随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先... 随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先将共炮道集混采数据分选为共检波点道集数据,以此来降低非主震源激发信号的相关性,然后基于残差UNet网络实现双源混采数据的智能分离。相比传统U-Net网络,本文的网络模型增加了网络深度,并在下采样过程中引入了卷积残差模块,有效避免了梯度消失和梯度爆炸问题,提升了特征提取能力,尤其在细节问题处理上,更好地保护了有效信息。通过模型试算和实际资料处理,验证了该网络在海洋混采数据分离中的良好效果。实验结果表明,残差U-Net网络能够有效分离混采数据,且不损失有效信号,显著提高了分离结果的信噪比。研究结果可为海洋地震混采数据的高精度分离提供新思路,为后续地震资料处理奠定基础。 展开更多
关键词 混采分离 深度学习 残差U-net网络 分离精度
在线阅读 下载PDF
改进TransUNet的高效通道注意力医学图像分割网络
12
作者 邓酩 徐锦凡 +1 位作者 肖洪祥 谢晓兰 《计算机应用》 北大核心 2025年第12期4037-4044,共8页
医学图像分割在计算机辅助诊断和手术导航等临床应用中起着至关重要的作用,旨在从复杂的医学影像中精准提取不同器官和病灶。然而,现有的U型网络结构在实际应用中存在跳跃连接信息冗余大和计算量高等问题。为了解决这些问题,提出一种轻... 医学图像分割在计算机辅助诊断和手术导航等临床应用中起着至关重要的作用,旨在从复杂的医学影像中精准提取不同器官和病灶。然而,现有的U型网络结构在实际应用中存在跳跃连接信息冗余大和计算量高等问题。为了解决这些问题,提出一种轻量化医学图像分割网络ES-TransUNet(Efficient channel attention and Simple-TransUNet)。该网络在编码器中通过引入十字交叉注意力(CCA)机制捕捉图像中的长距离依赖关系,并优化Transformer中的多头注意力结构,从而使模型轻量化,在解码器中引入动态上采样(Dysample)模块提升上采样效率;同时为了减少跳跃连接中的信息冗余,引入简单上下文Transformer(SCOT)块对冗余特征进行过滤。在Synapse多器官分割和ACDC数据集上的实验结果表明,ES-TransUNet相比TransUNet分别取得了2.37和1.57个百分点的Dice相似系数(DSC)提升,并在Synapse数据集上使Hausdorff距离(HD)降低了约9.69。此外,所提网络与现有最先进的医学分割模型的对比结果表明,ES-TransUNet在保持较高分割精度的基础上,显著降低了模型的参数量和计算复杂度,并提高了推理效率。可见,该网络更满足实时医学图像分割的实际需求。 展开更多
关键词 医学图像分割 U-net 轻量化 TRANSFORMER 跳跃连接 注意力机制
在线阅读 下载PDF
基于多叶位快速叶绿素荧光和1D-DRDC-Net的棉苗盐胁迫诊断方法
13
作者 翁海勇 曾海燕 +3 位作者 雷庆元 周蓓蓓 李佳怿 徐洪烟 《农业机械学报》 北大核心 2025年第3期476-484,493,共10页
盐胁迫会导致棉花纤维品质及产量下降,尤其在苗期时其遭受盐胁迫影响最大。为了实现棉苗盐胁迫的快速诊断,本文利用快速叶绿素荧光技术获取了不同盐胁迫程度下棉苗冠层叶片的OJIP曲线,并结合深度残差网络(Deep residual network,ResNet... 盐胁迫会导致棉花纤维品质及产量下降,尤其在苗期时其遭受盐胁迫影响最大。为了实现棉苗盐胁迫的快速诊断,本文利用快速叶绿素荧光技术获取了不同盐胁迫程度下棉苗冠层叶片的OJIP曲线,并结合深度残差网络(Deep residual network,ResNet)和空洞卷积(Dilated convolution)结构构建了基于“叶位-通道”荧光数据融合的1D-DRDC-Net(1D-deep residual dilated convolutional neural network)棉苗盐胁迫深度学习诊断模型。结果表明,盐胁迫导致棉苗体内含水率下降,丙二醛(Malondialdehyde,MDA)含量、超氧化物歧化酶(Superoxide dismutase,SOD)活性、过氧化物酶(Peroxidase,POD)活性升高;在垂直方向上盐胁迫对棉苗的影响趋势表现为植株上部分叶片各参数变化明显,其中对胁迫最敏感的叶位为L1,而成熟叶片受到的影响相对较小。相比于其它模型,1D-DRDC-Net对棉苗不同胁迫时间下3个盐浓度梯度(0、100、200 mmol/L)的诊断精度为76.67%,F1值为76.48%,比支持向量机(Support vector machine,SVM)、反向传播神经网络(Back propagation neural network,BPNN)准确率均提高5个百分点,比随机森林(Random forest,RF)提高14.45个百分点,比双向长短期记忆网络(Bidirectional long short-term memory,Bi-LSTM)提高3.34个百分点。基于“叶位-通道”的荧光信息融合策略准确率优于仅使用单一敏感叶位荧光信息8.89个百分点,其鲁棒性和泛化能力均优于只采用普通卷积核和取消“跳跃连接”的模型。最终,建立的1D-DRDC-Net模型在棉苗受到胁迫7、14、21 d后,对植株是否受到盐胁迫的诊断准确率分别达到83.33%、88.33%和95.00%,研究结果可为棉花栽培管理提供理论依据。 展开更多
关键词 棉苗盐胁迫 垂直异质性分布 快速叶绿素荧光 1D-DRDC-net
在线阅读 下载PDF
基于轻量化U⁃Net的高效地震速度反演方法
14
作者 张岩 王海潮 +3 位作者 姚亮亮 陈柏汉 李新月 孟德聪 《石油地球物理勘探》 北大核心 2025年第4期817-827,共11页
智能地震速度反演是当前地震勘探中的热点、难点,然而复杂的深度学习网络结构对硬件设备的算力要求较高,限制了模型在数据量大和时效性要求高的场景中的应用。为了解决上述问题,根据特征工程和模型轻量化的思想改进了U‑Net,提出适用于GP... 智能地震速度反演是当前地震勘探中的热点、难点,然而复杂的深度学习网络结构对硬件设备的算力要求较高,限制了模型在数据量大和时效性要求高的场景中的应用。为了解决上述问题,根据特征工程和模型轻量化的思想改进了U‑Net,提出适用于GPU的反演网络U‑Net vG和适用于CPU的反演网络U‑Net vC。首先分析速度反演网络的特点,得出卷积神经网络的轻量化原则;然后通过对多尺度模块、注意力门模块及特征提取模块进行轻量化处理得到轻量级速度建模卷积神经网络,在保持预测准确性的同时减小网络体积。数据测试结果表明,该网络训练过程对高性能硬件资源的需求更低,可以实现高效速度反演,具有更高的地震速度反演精度,具有较高的抗噪性。该方法可为解决地震数据反演中的算力瓶颈问题提供新思路。 展开更多
关键词 地震速度反演 深度学习 U‑net 轻量化 特征提取
在线阅读 下载PDF
基于改进U-Net的城市洪涝灾害图像识别模型
15
作者 钟兴润 田晨斌 +2 位作者 李新宏 孟晓静 杨文欣 《中国安全科学学报》 北大核心 2025年第10期190-197,共8页
为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设... 为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设计,采用深层残差网络作为编码器以增强特征表达能力,同时在解码器中引入注意力机制,以提高对关键洪涝区域的响应能力;构建完整的训练与测试流程,使用FloodNet多类别复杂环境数据集训练改进AttResU-Net模型,从定量指标和定性可视化效果2个维度来评估模型性能,并与现有主流模型进行对比分析。结果表明:AttResU-Net模型在平均像素准确率(mPA)、像素准确率(PA)、平均精度(mPrecision)等指标上表现优异,其中,mPA为79.75%、PA为90.01%、mPrecision为81.78%;相比其他模型,AttResU-Net模型在树木、水体、道路和建筑物等识别中表现出更高的分割准确率、全局像素精度和全局识别能力。 展开更多
关键词 U-net 洪涝灾害 图像识别 图像分割 注意力机制 残差
原文传递
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究
16
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 U-net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于改进U-Net网络的PCB缺陷检测方法 被引量:1
17
作者 彭勇 刘慧民 +1 位作者 李伟松 王石 《计算技术与自动化》 2025年第1期183-188,共6页
针对PCB表面小尺寸缺陷难以检测的问题,提出了一种改进的U-Net语义分割网络,实现PCB表面缺陷图像的精确检测。首先,将U-Net的四层网络层次修改为三层,可以减少整体的计算工作量、提升网络模型收敛速度、缩短训练时间;其次,在U-Net网络... 针对PCB表面小尺寸缺陷难以检测的问题,提出了一种改进的U-Net语义分割网络,实现PCB表面缺陷图像的精确检测。首先,将U-Net的四层网络层次修改为三层,可以减少整体的计算工作量、提升网络模型收敛速度、缩短训练时间;其次,在U-Net网络中融入CBAM(Convolutional Block Attention Module)模块来提升图像中缺陷目标的显著度;然后,在编码阶段使用混合空洞卷积替换原有卷积块,增大感受野,获取更多的上下文信息。结果表明,U-Net的改进模型能够在提升模型性能的同时减少计算复杂度,能够增加PCB缺陷检测效率。 展开更多
关键词 缺陷检测 U-net 空洞卷积 注意力机制 语义分割网络 轻量型网络 深度学习 小目标检测
在线阅读 下载PDF
轻量化U-net模型在钢筋直径测量中的应用研究 被引量:1
18
作者 张学辉 于站海 +2 位作者 田学昭 安军海 刘新军 《河北工业科技》 2025年第3期248-257,共10页
为了解决钢筋工程验收时传统人工检测效率低,检测过程中容易因人为因素导致的测量误差大,甚至误检漏检等问题,提出了一种基于改进轻量化U-net模型的钢筋直径测量方法。首先,采集大量钢筋图像并构建钢筋图像自制数据集,引入MobileNetV3 B... 为了解决钢筋工程验收时传统人工检测效率低,检测过程中容易因人为因素导致的测量误差大,甚至误检漏检等问题,提出了一种基于改进轻量化U-net模型的钢筋直径测量方法。首先,采集大量钢筋图像并构建钢筋图像自制数据集,引入MobileNetV3 Block模块和坐标注意力(coordinate attention,CA)机制对经典U-net模型进行改进。然后,基于自制数据集对改进U-net模型进行训练,训练完成后,将测试图像导入模型进行分割实验和直径测量实验。结果表明:改进U-net模型在钢筋图像分割任务中的交并比(IoU)达到了0.9795,模型大小仅为18.03 MB,直径测量实验的总平均误差为0.207 mm。改进模型在钢筋图像分割时表现出色,具有较高的检测精度和较低的计算成本,为钢筋图像分割提供了新的技术路径,在钢筋图像自动化处理和分析领域,具有一定的应用前景。 展开更多
关键词 土木建筑工程测量 钢筋直径测量 图像分割 改进U-net模型 CA注意力机制
在线阅读 下载PDF
结合并联Transformer和残差U-Net网络的水下图像增强 被引量:1
19
作者 陈清江 李宗莹 《电子科技》 2025年第8期57-65,共9页
针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Conv... 针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Convolution Transformer Block,HCTB)。综合了Transformer的捕获全局信息能力和卷积块捕获局部信息能力,并且在跳跃连接部分搭建了若干平行注意模块(Parallel Attention Module,PAM)来提取更重要的像素和通道信息。采用现有UIEB(Underwater Image Enhancement Benchmark dataset)配对数据集对网络进行训练。为验证所提算法的有效性,选取不同偏色程度的水下图像进行实验与测试。实验结果表明,所提模型较其他先进模型的峰值信噪比PSNR(Peak Single-to-Ratio)值提升了4.3%,获得了较好的主观和客观评价结果,有效提升了水下图像的增强水平。 展开更多
关键词 水下图像增强 TRANSFORMER 残差卷积 U-net网络 平行注意模块 通道注意 像素注意 卷积神经网络 深度学习
在线阅读 下载PDF
基于U-Net和Transformer结合的不完整多模态脑肿瘤分割方法
20
作者 汤占军 蹇洪 王健 《数据采集与处理》 北大核心 2025年第4期934-949,共16页
由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑... 由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑肿瘤分割(Incomplete multimodal brain tumor segmentation based on the combination of U-Net and Transformer,IM TransNet)方法。首先,针对脑肿瘤MRI的4个不同模态设计了单模态特定编码器,提升模型对各模态数据的表征能力。其次,在U-Net中嵌入双重注意力的Transformer模块,克服模态缺失引起的信息不完整问题,减少U-Net的长距离上下文交互和空间依赖性局限。在U-Net的跳跃连接中加入跳跃交叉注意力机制,动态关注不同层级和模态的特征,即使在模态缺失时,也能有效融合特征并进行重建。此外,针对模态缺失引起的训练不平衡问题,设计了辅助解码模块,确保模型在各种不完整模态子集上均能稳定高效地分割脑肿瘤。最后,基于公开数据集BRATS验证模型的性能。实验结果表明,本文提出的模型在增强型肿瘤、肿瘤核心和全肿瘤上的平均Dice评分分别为63.19%、76.42%和86.16%,证明了其在处理不完整多模态数据时的优越性和稳定性,为临床实践中脑肿瘤的准确、高效和可靠分割提供了一种可行的技术手段。 展开更多
关键词 注意力机制 脑肿瘤分割 多模态 U-net TRANSFORMER
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部