The excessive buildup of neurotoxicα-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease,highlighting the urgent need for innovative therapeutic strategies to promoteα-synuclein clearance,p...The excessive buildup of neurotoxicα-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease,highlighting the urgent need for innovative therapeutic strategies to promoteα-synuclein clearance,particularly given the current lack of disease-modifying treatments.The glymphatic system,a recently identified perivascular fluid transport network,is crucial for clearing neurotoxic proteins.This review aims to synthesize current knowledge on the role of the glymphatic system inα-synuclein clearance and its implications for the pathology of Parkinson's disease while emphasizing potential therapeutic strategies and areas for future research.The review begins with an overview of the glymphatic system and details its anatomical structure and physiological functions that facilitate cerebrospinal fluid circulation and waste clearance.It summarizes emerging evidence from neuroimaging and experimental studies that highlight the close correlation between the glymphatic system and clinical symptom severity in patients with Parkinson's disease,as well as the effect of glymphatic dysfunction onα-synuclein accumulation in Parkinson's disease models.Subsequently,the review summarizes the mechanisms of glymphatic system impairment in Parkinson's disease,including sleep disturbances,aquaporin-4 impairment,and mitochondrial dysfunction,all of which diminish glymphatic system efficiency.This creates a vicious cycle that exacerbatesα-synuclein accumulation and worsens Parkinson's disease.The therapeutic perspectives section outlines strategies for enhancing glymphatic activity,such as improving sleep quality and pharmacologically targeting aquaporin-4 or its subcellular localization.Promising interventions include deep brain stimulation,melatonin supplementation,γ-aminobutyric acid modulation,and non-invasive methods(such as exercise and bright-light therapy),multisensoryγstimulation,and ultrasound therapy.Moreover,identifying neuroimaging biomarkers to assess glymphatic flow as an indicator ofα-synuclein burden could refine Parkinson's disease diagnosis and track disease progression.In conclusion,the review highlights the critical role of the glymphatic system inα-synuclein clearance and its potential as a therapeutic target in Parkinson's disease.It advocates for further research to elucidate the specific mechanisms by which the glymphatic system clears misfoldedα-synuclein and the development of imaging biomarkers to monitor glymphatic activity in patients with Parkinson's disease.Findings from this review suggest that enhancing glymphatic clearance is a promising strategy for reducingα-synuclein deposits and mitigating the progression of Parkinson's disease.展开更多
α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively dete...α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.展开更多
Lewy body diseases(LBD),including Parkinson’s disease(PD)and dementia with Lewy bodies(DLB),are neurodegenerative disorders characterized by the intracellular aggregation and accumulation ofα-Synuclein(αSyn),leadin...Lewy body diseases(LBD),including Parkinson’s disease(PD)and dementia with Lewy bodies(DLB),are neurodegenerative disorders characterized by the intracellular aggregation and accumulation ofα-Synuclein(αSyn),leading to neuronal death.Although these diseases primarily present with symptoms affecting the central nervous system(CNS),such as motor and cognitive impairment,increasing research suggests that their roots may be found in the gut.This review summarizes recent findings and key historical insights into the involvement of the gut in αSyn pathology.The topics covered include pathological observations in patients with LBD,animal models investigating the propagation of αSyn from the gut to the brain,intestinal inflammation,alterations in the gut microbiome,and the molecular mechanisms of αSyn pathology within enteric neurons.These topics are essential for understanding the involvement of the gut in αSyn pathology and provide foundational insights that may lead to future therapeutic applications.展开更多
基金supported by the National Natural Science Foundation of China,No.81971031(to ZL)the National Key Research and Development Program of China,No.2022YFE0210100(to JFC)+7 种基金the National Natural Science Foundation of China(Original Exploration Project),No.82151308(to JFC)the National Natural Science Foundation of China(Research Fund for International Senior Scientists),No.82150710558(to JFC)Science&Technology Initiative STI2030-Major Projects,No.2021ZD0203400(to JFC)Key Research and Development Program of Zhejiang Province,No.2023C03079(to JFC)Scientific Research Starting Foundation of Oujiang Laboratory(Zhejiang Laboratory for Regenerative Medicine,Vision and Brain Health),No.OJQDSP2022007(to JFC)Project of State Key Laboratory of Ophthalmology,Optometry and Visual Science,Wenzhou Medical University,No.J01-20190101(to JFC)Scientific Research Starting Foundation of Wenzhou Medical University,No.QTJ12003(to JFC)Department of Science and Technology of Zhejiang Province,No.2023ZY1011(to JFC)。
文摘The excessive buildup of neurotoxicα-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease,highlighting the urgent need for innovative therapeutic strategies to promoteα-synuclein clearance,particularly given the current lack of disease-modifying treatments.The glymphatic system,a recently identified perivascular fluid transport network,is crucial for clearing neurotoxic proteins.This review aims to synthesize current knowledge on the role of the glymphatic system inα-synuclein clearance and its implications for the pathology of Parkinson's disease while emphasizing potential therapeutic strategies and areas for future research.The review begins with an overview of the glymphatic system and details its anatomical structure and physiological functions that facilitate cerebrospinal fluid circulation and waste clearance.It summarizes emerging evidence from neuroimaging and experimental studies that highlight the close correlation between the glymphatic system and clinical symptom severity in patients with Parkinson's disease,as well as the effect of glymphatic dysfunction onα-synuclein accumulation in Parkinson's disease models.Subsequently,the review summarizes the mechanisms of glymphatic system impairment in Parkinson's disease,including sleep disturbances,aquaporin-4 impairment,and mitochondrial dysfunction,all of which diminish glymphatic system efficiency.This creates a vicious cycle that exacerbatesα-synuclein accumulation and worsens Parkinson's disease.The therapeutic perspectives section outlines strategies for enhancing glymphatic activity,such as improving sleep quality and pharmacologically targeting aquaporin-4 or its subcellular localization.Promising interventions include deep brain stimulation,melatonin supplementation,γ-aminobutyric acid modulation,and non-invasive methods(such as exercise and bright-light therapy),multisensoryγstimulation,and ultrasound therapy.Moreover,identifying neuroimaging biomarkers to assess glymphatic flow as an indicator ofα-synuclein burden could refine Parkinson's disease diagnosis and track disease progression.In conclusion,the review highlights the critical role of the glymphatic system inα-synuclein clearance and its potential as a therapeutic target in Parkinson's disease.It advocates for further research to elucidate the specific mechanisms by which the glymphatic system clears misfoldedα-synuclein and the development of imaging biomarkers to monitor glymphatic activity in patients with Parkinson's disease.Findings from this review suggest that enhancing glymphatic clearance is a promising strategy for reducingα-synuclein deposits and mitigating the progression of Parkinson's disease.
基金supported by the Natural Science Foundation of Guangxi Zhuang Automomous Region,Nos.2019GXNSFDA245015(to MC),2022GXNSFBA035654(to HL)the National Natural Science Foundation of China,Nos.82360241(to MC),82304876(to HL)+1 种基金Scientific Research and Technology Development Project of Guilin City,Nos.20220139-3(to MC),20210218-5(to HL)Guangxi Medical and Health Key Discipline Construction Project(to QL)。
文摘α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.
基金supported by Japan Society for the Promotion of Science(JSPS)KAKENHI Grant Number JP24KJ0359.
文摘Lewy body diseases(LBD),including Parkinson’s disease(PD)and dementia with Lewy bodies(DLB),are neurodegenerative disorders characterized by the intracellular aggregation and accumulation ofα-Synuclein(αSyn),leading to neuronal death.Although these diseases primarily present with symptoms affecting the central nervous system(CNS),such as motor and cognitive impairment,increasing research suggests that their roots may be found in the gut.This review summarizes recent findings and key historical insights into the involvement of the gut in αSyn pathology.The topics covered include pathological observations in patients with LBD,animal models investigating the propagation of αSyn from the gut to the brain,intestinal inflammation,alterations in the gut microbiome,and the molecular mechanisms of αSyn pathology within enteric neurons.These topics are essential for understanding the involvement of the gut in αSyn pathology and provide foundational insights that may lead to future therapeutic applications.