The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ...The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.展开更多
A thickness-controllable method for preparing metal-organic framework hollow nanofiowers on magnetic cores(Fe_(3)O_(4)@MOFs HFs)was demonstrated for the first time.The petal of magnetic core with hollow nanofiower str...A thickness-controllable method for preparing metal-organic framework hollow nanofiowers on magnetic cores(Fe_(3)O_(4)@MOFs HFs)was demonstrated for the first time.The petal of magnetic core with hollow nanofiower structure served as medium for assembling Ui O-66-NH_(2)shell with different thickness.To further improve its performance,Zr^(4+)was immobilized on the surface of Fe_(3)O_(4)@Ui O-66-NH_(2).Compared with conventional Fe_(3)O_(4)@Ui O-66-NH_(2)-Zr^(4+)nanospheres,the Fe_(3)O_(4)@Ui O-66-NH2-Zr4+HFs showed increased enrichment performance for phosphopeptides.The Fe_(3)O_(4)@Ui O-66-NH2-Zr4+HFs served as an attractive restricted-access adsorption material exhibited good selectivity(m_(β-casein):m_(BSA)=1:1000),high sensitivity(1.0 fmol)and excellent size-exclusion effect(m)((β-casein digests):m_(BSA)=1:200).Furthermore,the Fe_(3)O_(4)@Ui O-66-NH_(2)-Zr^(4+)HFs was successfully applied to the specific capture of ultratrace phosphopeptide from complex biological samples,revealing the great potential for the identification and analysis of trace phosphopeptides in clinical analysis.This work can be easily extended to the fabrication of diverse mag-MOF HFs with multifunctional and easy to post-modify properties,and open up a new avenue for the design and construction of new MOFs material.展开更多
Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularl...Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.展开更多
The arbitrary discharge of tetracycline(TC)residuals has seriously influenced the ecosystem and human health.Laccase(Lac)-based biodegradation technology is considered a more effective way to remove TC due to its high...The arbitrary discharge of tetracycline(TC)residuals has seriously influenced the ecosystem and human health.Laccase(Lac)-based biodegradation technology is considered a more effective way to remove TC due to its high catalytic efficiency and less by-product.Nevertheless,free Lac suffers from poor stability,easy inactivation and difficult recovery,restricting its application.Immobilization of Lac is considered an efficient strategy for addressing these obstacles.In this study,a magnetic metal-organic framework of Fe_(3)O_(4)@SiO_(2)@UiO-66-NH_(2)(MMOF)was prepared and used as a carrier to immobilize Lac(Lac@MMOF)for TC degradation.Benefiting from the multiple binding sites,adsorption,and protection effect of MMOF,Lac@MMOF displayed a wider pH application range(2–7)and better thermal(15–85℃),repeatability,and storage stability than free Lac.Furthermore,owing to the synergism of MOF adsorption and Lac biocatalysis,the removal rate of Lac@MMOF for TC could be up to 98%at pH=7 within 1 hr,which was 1.29 and 1.24 times that of free Lac and MMOF,respectively.More importantly,Lac@MMOF could easily be separated from aqueous solution under a magnetic field and maintained good removal performance(80%)after five cycles.The degradation products were identified by applying LC-MS/MS,and possible degradation mechanisms and pathways were proposed.Finally,the antibacterial activity of intermediate products was evaluated using Escherichia coli,which revealed that the toxicity of TC was reduced effectively by the degradation of Lac@MMOF.Overall,Lac@MMOF is a green alternative for residual antibiotic removal in water.展开更多
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu...Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.展开更多
Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programm...Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.展开更多
The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engin...The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engineering into IoT engineering education remains underexplored.To address this gap,the School of Software at North University of China,in collaboration with QST Innovation Technology Group Co.,Ltd.(QST),has developed an innovative educational mechanism.This initiative focuses on the software engineering IoT track and optimizes the teaching process through the outcome-based education(OBE)concept.It incorporates military-industrial characteristics,introduces advanced information and technology curricula,and enhances laboratory infrastructure.The goal is to cultivate innovative talents with unique capabilities,thereby fostering the comprehensive development and application of IoT technology.展开更多
Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework...Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices.展开更多
The development of organic frameworks with radical skeletons is desired.In this study,we report the development of a novel two-dimensional radical halogen-bonded organic framework(XOF).The radical monomer,benzimidazol...The development of organic frameworks with radical skeletons is desired.In this study,we report the development of a novel two-dimensional radical halogen-bonded organic framework(XOF).The radical monomer,benzimidazole triphenylmethyl(BTTM),was synthesized through the coupling of TTM radicals with benzimidazole.Initially,the benzimidazole units were coordinated with Ag^(+)ions to create a[N···Ag···N]^(+)framework.Subsequently,the addition of iodine led to the in situ replacement of Ag^(+)with I^(+)ions,forming[N···I···N]^(+)linkers and resulting in the creation of the XOF structure.The resulting XOF-HBTTM and XOF-BTTM structures demonstrated good-crystallinity,confirmed by PXRD,HR-TEM,SEAD,and SAXS analyses.EPR measurements confirmed the preservation of radical characteristics within the XOF framework.Furthermore,SQUID measurements indicated that XOF-BTTM exhibits spin moments of S=1/2 at 2 K,with a saturated magnetization strength peaking at 4.10 emu/g,a notable enhancement compared to 1.87 emu/g for the BTTM monomer.This improvement in magnetism is attributed to the extended spin density distribution and the presence of[N···I···N]^(+)interactions,as suggested by DFT calculations.Additionally,the radical XOF-BTTM exhibited significantly enhanced electrical conductivity,reaching up to 1.30×10^(-4)S/cm,which is two orders of magnitude higher than that of XOF-HBTTM.This increased conductivity is linked to a reduced HOMO-LUMO gap,higher carrier density,and the incorporation of triphenylmethyl radicals within the framework.This research highlights the potential of benzimidazolyl motifs in constructing functional XOFs and advances our understanding of radical organic frameworks.展开更多
Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable se...Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca...Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
The combination of high efficiency and environmental stability is vital to promote the commercial appli-cations of microwave absorption(MA)materials,yet remains challenging in the absence of facile routes.Here,we put ...The combination of high efficiency and environmental stability is vital to promote the commercial appli-cations of microwave absorption(MA)materials,yet remains challenging in the absence of facile routes.Here,we put forward a graphene-reinforced construct approach for one-pot synthesis of 3D intercon-nected magnetic-dielectric frameworks via pre-functionalization and subsequent assembly.Multiple in-teractions among discrete precursors are capable of manipulating the confined growth and interfacial self-assembly.Significant enhancements in MA properties are triggered in a straightforward manner us-ing ultralow feeding fractions of graphene oxide nanosheet.The minimum reflection loss is up to-60.1 dB(99.9999%wave absorption)and the effective absorption bandwidth reaches 5.9 GHz(almost covering the Ku band).Remarkably,based on the optimization by ultralow concentrations of graphene,the as-prepared nanoarchitecture simultaneously integrates strong absorption,broad bandwidth,and low matching thick-ness.The embedded graphene nanosheets serve as high-speed electron transmission channels and hollow resonance cavities,facilitating multimode attenuations and impedance-matching characteristics.Mean-while,the graphene-reinforced framework suppresses the corrosion of magnetic components,whose cor-rosion rate reduces by an order of magnitude.This study provides a simple procedure to boost magnetic-dielectric absorbers for comprehensive MA performances and enhanced corrosion resistance.展开更多
Metal-organic frameworks(MOFs)combined with specific ligands are highly adaptable smart materials that can respond to external and physiological stimuli.In this study,we introduced a pyridinyl zwitterionic ligand with...Metal-organic frameworks(MOFs)combined with specific ligands are highly adaptable smart materials that can respond to external and physiological stimuli.In this study,we introduced a pyridinyl zwitterionic ligand with light/pH dual response into magnetic MOF composite(Fe_(3)O_(4)@ZW-MOF)for enrichment of phosphorylated peptides for the first time.The introduction of the developed ligand gives MOF material dual response properties.Light stimulation affects the generation/disappearance of free radicals of the pyridine derivative,resulting in a change in the charge gradient of the zwitterion,and zwitterion can also regulate the p H of the solution by adding acid or base.Therefore,the reversible capture and release of phosphorylated peptides can be easily achieved by adjusting light and pH.The established phosphorylated peptide enrichment platform exhibits high sensitivity(detection limit of 1 fmol),high selectivity(β-casein:BSA,1:1000),and good reusability(7 cycles).In addition,the method was applied to the enrichment of phosphorylated peptides in complex systems(non-fat milk and human serum),demonstrating the feasibility of this method for phosphoproteom analysis.In conclusion,the synthesized Fe_(3)O_(4)@ZW-MOF is a promising MOF material,which provides the possibility to advance the application of responsive MOFs materials in proteomics.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
基金supported by the Natural Science Research Project of the Anhui Educational Committee,China(No.2022AH050827)the Open Research Fund Program of Anhui Province Key Laboratory of Specialty Polymers,Anhui University of Science and Technology,China(No.AHKLSP23-12)the Joint National-Local Engineering Research Center for Safe and Precise Coal Mining Fund,China(No.EC2022020)。
文摘The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.
基金sponsored by the National Natural Science Foundation of China (Nos. 22106038, 22204171 and 22076038)the Henan Provincial Science and Technology Research Project (No. 232102310112)+2 种基金the China Postdoctoral Science Foundation (No. 2022M713299)Natural Science Foundation of Henan Province, China (No. 202300410044)Henan key scientific research programs to Universities and Colleges (No. 22ZX003)。
文摘A thickness-controllable method for preparing metal-organic framework hollow nanofiowers on magnetic cores(Fe_(3)O_(4)@MOFs HFs)was demonstrated for the first time.The petal of magnetic core with hollow nanofiower structure served as medium for assembling Ui O-66-NH_(2)shell with different thickness.To further improve its performance,Zr^(4+)was immobilized on the surface of Fe_(3)O_(4)@Ui O-66-NH_(2).Compared with conventional Fe_(3)O_(4)@Ui O-66-NH_(2)-Zr^(4+)nanospheres,the Fe_(3)O_(4)@Ui O-66-NH2-Zr4+HFs showed increased enrichment performance for phosphopeptides.The Fe_(3)O_(4)@Ui O-66-NH2-Zr4+HFs served as an attractive restricted-access adsorption material exhibited good selectivity(m_(β-casein):m_(BSA)=1:1000),high sensitivity(1.0 fmol)and excellent size-exclusion effect(m)((β-casein digests):m_(BSA)=1:200).Furthermore,the Fe_(3)O_(4)@Ui O-66-NH_(2)-Zr^(4+)HFs was successfully applied to the specific capture of ultratrace phosphopeptide from complex biological samples,revealing the great potential for the identification and analysis of trace phosphopeptides in clinical analysis.This work can be easily extended to the fabrication of diverse mag-MOF HFs with multifunctional and easy to post-modify properties,and open up a new avenue for the design and construction of new MOFs material.
文摘Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.
基金supported by the National Natural Science Foundation of China(No.U20A20133)the National Key Research and Development Program of China(No.2022YFF0606703).
文摘The arbitrary discharge of tetracycline(TC)residuals has seriously influenced the ecosystem and human health.Laccase(Lac)-based biodegradation technology is considered a more effective way to remove TC due to its high catalytic efficiency and less by-product.Nevertheless,free Lac suffers from poor stability,easy inactivation and difficult recovery,restricting its application.Immobilization of Lac is considered an efficient strategy for addressing these obstacles.In this study,a magnetic metal-organic framework of Fe_(3)O_(4)@SiO_(2)@UiO-66-NH_(2)(MMOF)was prepared and used as a carrier to immobilize Lac(Lac@MMOF)for TC degradation.Benefiting from the multiple binding sites,adsorption,and protection effect of MMOF,Lac@MMOF displayed a wider pH application range(2–7)and better thermal(15–85℃),repeatability,and storage stability than free Lac.Furthermore,owing to the synergism of MOF adsorption and Lac biocatalysis,the removal rate of Lac@MMOF for TC could be up to 98%at pH=7 within 1 hr,which was 1.29 and 1.24 times that of free Lac and MMOF,respectively.More importantly,Lac@MMOF could easily be separated from aqueous solution under a magnetic field and maintained good removal performance(80%)after five cycles.The degradation products were identified by applying LC-MS/MS,and possible degradation mechanisms and pathways were proposed.Finally,the antibacterial activity of intermediate products was evaluated using Escherichia coli,which revealed that the toxicity of TC was reduced effectively by the degradation of Lac@MMOF.Overall,Lac@MMOF is a green alternative for residual antibiotic removal in water.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-2-02038).
文摘Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.
文摘Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.
基金supported in part by the Universityindustry Collaborative Education Program of the Ministry of Education under Grant No.202102383004。
文摘The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engineering into IoT engineering education remains underexplored.To address this gap,the School of Software at North University of China,in collaboration with QST Innovation Technology Group Co.,Ltd.(QST),has developed an innovative educational mechanism.This initiative focuses on the software engineering IoT track and optimizes the teaching process through the outcome-based education(OBE)concept.It incorporates military-industrial characteristics,introduces advanced information and technology curricula,and enhances laboratory infrastructure.The goal is to cultivate innovative talents with unique capabilities,thereby fostering the comprehensive development and application of IoT technology.
基金supported by Key Research and Development Project of Shandong Province(2021ZDSYS12)National Natural Science Foundation of China(22076086,21777089)+3 种基金Taishan Scholar Program of Shandong Province(ts20190948)Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project(2023TSGC0689,2023TSGC0055)Natural Science Foundation of Shandong Province(ZR2021MB086,ZR2023QB035)Jinan City University and Institute Innovation Team Project(2021GXRC061,20228045,202333027)。
文摘Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices.
基金supported by National Natural Science Foundation of China(Nos.22371218,21702153,52270070 and21801194)Natural Science Foundation of Zhejiang Province(No.LR22B020001)+1 种基金Wuhan Science and Technology Bureau(No.whkxjsj009)the support of the Core Facility of Wuhan University and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University。
文摘The development of organic frameworks with radical skeletons is desired.In this study,we report the development of a novel two-dimensional radical halogen-bonded organic framework(XOF).The radical monomer,benzimidazole triphenylmethyl(BTTM),was synthesized through the coupling of TTM radicals with benzimidazole.Initially,the benzimidazole units were coordinated with Ag^(+)ions to create a[N···Ag···N]^(+)framework.Subsequently,the addition of iodine led to the in situ replacement of Ag^(+)with I^(+)ions,forming[N···I···N]^(+)linkers and resulting in the creation of the XOF structure.The resulting XOF-HBTTM and XOF-BTTM structures demonstrated good-crystallinity,confirmed by PXRD,HR-TEM,SEAD,and SAXS analyses.EPR measurements confirmed the preservation of radical characteristics within the XOF framework.Furthermore,SQUID measurements indicated that XOF-BTTM exhibits spin moments of S=1/2 at 2 K,with a saturated magnetization strength peaking at 4.10 emu/g,a notable enhancement compared to 1.87 emu/g for the BTTM monomer.This improvement in magnetism is attributed to the extended spin density distribution and the presence of[N···I···N]^(+)interactions,as suggested by DFT calculations.Additionally,the radical XOF-BTTM exhibited significantly enhanced electrical conductivity,reaching up to 1.30×10^(-4)S/cm,which is two orders of magnitude higher than that of XOF-HBTTM.This increased conductivity is linked to a reduced HOMO-LUMO gap,higher carrier density,and the incorporation of triphenylmethyl radicals within the framework.This research highlights the potential of benzimidazolyl motifs in constructing functional XOFs and advances our understanding of radical organic frameworks.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(GPIP:71-829-2024).
文摘Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金We are grateful to National Natural Science Foundation of China(Grant No.22375056,52272163)the Key R&D Program of Hebei(Grant No.216Z1201G)+1 种基金Natural Science Foundation of Hebei Province(Grant No.E2022208066,B2021208014)Key R&D Program of Hebei Technological Innovation Center of Chiral Medicine(Grant No.ZXJJ20220105).
文摘Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金support from the National Natural Science Foundation of China(No.52073039)Major Special Projects of Sichuan Province(Nos.2019ZDZX0027 and 2019ZDZX0016).
文摘The combination of high efficiency and environmental stability is vital to promote the commercial appli-cations of microwave absorption(MA)materials,yet remains challenging in the absence of facile routes.Here,we put forward a graphene-reinforced construct approach for one-pot synthesis of 3D intercon-nected magnetic-dielectric frameworks via pre-functionalization and subsequent assembly.Multiple in-teractions among discrete precursors are capable of manipulating the confined growth and interfacial self-assembly.Significant enhancements in MA properties are triggered in a straightforward manner us-ing ultralow feeding fractions of graphene oxide nanosheet.The minimum reflection loss is up to-60.1 dB(99.9999%wave absorption)and the effective absorption bandwidth reaches 5.9 GHz(almost covering the Ku band).Remarkably,based on the optimization by ultralow concentrations of graphene,the as-prepared nanoarchitecture simultaneously integrates strong absorption,broad bandwidth,and low matching thick-ness.The embedded graphene nanosheets serve as high-speed electron transmission channels and hollow resonance cavities,facilitating multimode attenuations and impedance-matching characteristics.Mean-while,the graphene-reinforced framework suppresses the corrosion of magnetic components,whose cor-rosion rate reduces by an order of magnitude.This study provides a simple procedure to boost magnetic-dielectric absorbers for comprehensive MA performances and enhanced corrosion resistance.
基金the financial support of the Fundamental Research Funds for the Central Universities,JLU,ChinaOpen Project of State Key Laboratory of Supramolecular Structure and Materials,Jilin University,China(No.sklssm2022012)。
文摘Metal-organic frameworks(MOFs)combined with specific ligands are highly adaptable smart materials that can respond to external and physiological stimuli.In this study,we introduced a pyridinyl zwitterionic ligand with light/pH dual response into magnetic MOF composite(Fe_(3)O_(4)@ZW-MOF)for enrichment of phosphorylated peptides for the first time.The introduction of the developed ligand gives MOF material dual response properties.Light stimulation affects the generation/disappearance of free radicals of the pyridine derivative,resulting in a change in the charge gradient of the zwitterion,and zwitterion can also regulate the p H of the solution by adding acid or base.Therefore,the reversible capture and release of phosphorylated peptides can be easily achieved by adjusting light and pH.The established phosphorylated peptide enrichment platform exhibits high sensitivity(detection limit of 1 fmol),high selectivity(β-casein:BSA,1:1000),and good reusability(7 cycles).In addition,the method was applied to the enrichment of phosphorylated peptides in complex systems(non-fat milk and human serum),demonstrating the feasibility of this method for phosphoproteom analysis.In conclusion,the synthesized Fe_(3)O_(4)@ZW-MOF is a promising MOF material,which provides the possibility to advance the application of responsive MOFs materials in proteomics.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.