Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installat...Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installation and use of the environment is introduced.A code established on the platform of MATLAB,which deals with the modal analysis of magnetic bearing system(MBS) supporting rotors of five degrees of freedom and considering the coupling of thrust bearing with radical bearings is modified to work in the environment.The purpose is to realize a remote call of the code by users through Internet for the performance analysis of the system.Such an application is very important to the concurrent design of MBS and for the utilization of distributive knowledge acquisition resources in collaborative design.The work on modification and realization is described and the results are discussed.展开更多
The distributed management has become an important tendency of development for the NMS (Network Management System) with the development of Internet. Based on the analysis of CORBA (Conmon Object Request Broker Archite...The distributed management has become an important tendency of development for the NMS (Network Management System) with the development of Internet. Based on the analysis of CORBA (Conmon Object Request Broker Architecture) technique, we mainly discuss about the applicability of the approach by which CORBA combined with Java has been applied to the system model and Web architecture: and address the applied frame and the interface definitions that are the, key technologies for implementing the Distributed Object Computing (DOC). In addition, we also conduct the research on its advantages and disadvantages and further expected improvements. Key words distributed Web network management - CORBA - Java CLC number TP 393.07 Foundation item: Supported by the QTNG (Integrated Network Management System) Project Foundation and QT-NMS (SDH NMS) Project Foundation of Wuhan Qingtian Information Industry Co., LTD of Hubei of China (SDH.001)Biography: WANG Feng (1979-), male Master candidate, research direction: administration of network and software engineering.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
The Internet has stepped into Web 2.0 era. Web 2.0 application technologies and services are rapidly developing, accompanied by the innovation and revolution of business models. This article analyzes the development o...The Internet has stepped into Web 2.0 era. Web 2.0 application technologies and services are rapidly developing, accompanied by the innovation and revolution of business models. This article analyzes the development of Web 2.0 technologies and their promotion role in the development of Internet services, discusses the implementation of Web 2.0 core concepts (including user participation, resource sharing and platform) by the multiple Internet application technologies, and gives the development trends of Internet application technologies.展开更多
Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptabilit...Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.展开更多
With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the...With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.展开更多
In today’s rapidly evolving digital landscape,web application security has become paramount as organizations face increasingly sophisticated cyber threats.This work presents a comprehensive methodology for implementi...In today’s rapidly evolving digital landscape,web application security has become paramount as organizations face increasingly sophisticated cyber threats.This work presents a comprehensive methodology for implementing robust security measures in modern web applications and the proof of the Methodology applied to Vue.js,Spring Boot,and MySQL architecture.The proposed approach addresses critical security challenges through a multi-layered framework that encompasses essential security dimensions including multi-factor authentication,fine-grained authorization controls,sophisticated session management,data confidentiality and integrity protection,secure logging mechanisms,comprehensive error handling,high availability strategies,advanced input validation,and security headers implementation.Significant contributions are made to the field of web application security.First,a detailed catalogue of security requirements specifically tailored to protect web applications against contemporary threats,backed by rigorous analysis and industry best practices.Second,the methodology is validated through a carefully designed proof-of-concept implementation in a controlled environment,demonstrating the practical effectiveness of the security measures.The validation process employs cutting-edge static and dynamic analysis tools for comprehensive dependency validation and vulnerability detection,ensuring robust security coverage.The validation results confirm the prevention and avoidance of security vulnerabilities of the methodology.A key innovation of this work is the seamless integration of DevSecOps practices throughout the secure Software Development Life Cycle(SSDLC),creating a security-first mindset from initial design to deployment.By combining proactive secure coding practices with defensive security approaches,a framework is established that not only strengthens application security but also fosters a culture of security awareness within development teams.This hybrid approach ensures that security considerations are woven into every aspect of the development process,rather than being treated as an afterthought.展开更多
Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the bat...Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results.展开更多
Making use of Microsoft Visual Studio.NET platform,hierarchical network planning is realized in working procedure time-optimization of the construction by TBM,and hierarchical network graph of the construction by TBM ...Making use of Microsoft Visual Studio.NET platform,hierarchical network planning is realized in working procedure time-optimization of the construction by TBM,and hierarchical network graph of the construction by TBM is drawn based on browser.Then the theory of system realization is discussed,six components of system that can be reused are explained emphatically.The realization of hierarchical network panning in Internet provides available guarantee for controlling rate of progress in large-scale or middle-sized projects.展开更多
Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility o...Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility of EMS has received considerable attention in health and transport geography studies.^([3])One of the optimal gauges for evaluating the accessibility of EMS is the response time,which is defined as the time from receiving an emergency call to the arrival of an ambulance.^([4])Beijing has already reduced the response time to approximately12 min,and the next goal is to ensure that the response time across Beijing does not exceed 12 min (the information comes from the Beijing Emergency Medical Center).展开更多
Inspired by bacterial motility mechanisms,Magnetic Helical Miniature Robots(MHMRs)exhibit promising applications in biomedical fields due to their efficient locomotion and compatibility with biological tissues.In this...Inspired by bacterial motility mechanisms,Magnetic Helical Miniature Robots(MHMRs)exhibit promising applications in biomedical fields due to their efficient locomotion and compatibility with biological tissues.In this review,we systematically survey the basics of MHMRs,from propulsion mechanism,magnetization and control methods to biomedical applications,aiming to provide readers with an easily understandable overview and fundamental knowledge on implementing MHMRs.The MHMRs are actuated by rotating magnetic fields,achieving steering and rotation through magnetic torque,and converting rotation into forward motion through the helical structure.Magnetization methods for MHMRs are reviewed into three types:attaching magnets,magnetic coatings,and magnetic powder doping.Additionally,this review discusses the control methods for MHMRs,covering imaging techniques,path tracking control—including classical control algorithms and increasingly popular learning-based methods,and swarm control.Subsequently,a comprehensive survey is conducted on the biomedical applications of MHMRs in the treatment of vascular diseases,drug delivery,cell delivery,and their integration with catheters.We finally provide a perspective about future challenges in MHMR research,including enhancing functional design capabilities,developing swarm-assisted independent control mechanisms,refining in vivo imaging techniques,and ensuring robust biocompatibility for safe medical use.展开更多
Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving c...Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving capabilities.Nevertheless,inherent challenges in graphene fibers(GFs),particularly the restricted ion-accessible specific surface area(SSA)and sluggish ion transport kinetics,hinder the achievement of optimal capacitance and rate performance.Despite existing reviews on GFSCs,a notable gap exists in thoroughly exploring the kinetics governing the energy storage process in GFSCs.This review aims to address this gap by thoroughly analyzing the energy storage mechanism,fabrication methodologies,property manipulation,and wearable applications of GFSCs.Through theoretical analysis of the energy storage process,specific parameters in advanced GF fabrication methodologies are carefully summarized,which can be used to modulate nano/micro-structures,thereby enhancing energy storage kinetics.In particular,enhanced ion storage is realized by creating more ion-accessible SSA and introducing extra-capacitive components,while accelerated ion transport is achieved by shortening the transport channel length and improving the accessibility of electrolyte ions.Building on the established structure-property relationship,several critical strategies for constructing optimal surface and structure profiles of GF electrodes are summarized.Capitalizing on the exceptional flexibility and wearability of GFSCs,the review further underscores their potential as foundational elements for constructing multifunctional e-textiles using conventional textile technologies.In conclusion,this review provides insights into current challenges and suggests potential research directions for GFSCs.展开更多
IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrai...IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrained resources,as well as the growing trend of using smart gadgets,there are privacy and security issues that are not adequately managed by conventional securitymeasures.This review offers a thorough analysis of contemporary AI solutions designed to enhance security within IoT ecosystems.The intersection of AI technologies,including ML,and blockchain,with IoT privacy and security is systematically examined,focusing on their efficacy in addressing core security issues.The methodology involves a detailed exploration of existing literature and research on AI-driven privacy-preserving security mechanisms in IoT.The reviewed solutions are categorized based on their ability to tackle specific security challenges.The review highlights key advancements,evaluates their practical applications,and identifies prevailing research gaps and challenges.The findings indicate that AI solutions,particularly those leveraging ML and blockchain,offerpromising enhancements to IoT privacy and security by improving threat detection capabilities and ensuring data integrity.This paper highlights how AI technologies might strengthen IoT privacy and security and offer suggestions for upcoming studies intended to address enduring problems and improve the robustness of IoT networks.展开更多
In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer sever...In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models.展开更多
The forthcoming sixth generation(6G)of mobile communication networks is envisioned to be AInative,supporting intelligent services and pervasive computing at unprecedented scale.Among the key paradigms enabling this vi...The forthcoming sixth generation(6G)of mobile communication networks is envisioned to be AInative,supporting intelligent services and pervasive computing at unprecedented scale.Among the key paradigms enabling this vision,Federated Learning(FL)has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data,thereby preserving privacy and reducing the need for centralized storage.This capability is particularly attractive for vision-based applications,where image and video data are both sensitive and bandwidth-intensive.However,the integration of FL with 6G networks presents unique challenges,including communication bottlenecks,device heterogeneity,and trade-offs between model accuracy,latency,and energy consumption.In this paper,we developed a simulation-based framework to investigate the performance of FL in representative vision tasks under 6G-like environments.We formalize the system model,incorporating both the federated averaging(FedAvg)training process and a simplified communication costmodel that captures bandwidth constraints,packet loss,and variable latency across edge devices.Using standard image datasets(e.g.,MNIST,CIFAR-10)as benchmarks,we analyze how factors such as the number of participating clients,degree of data heterogeneity,and communication frequency influence convergence speed and model accuracy.Additionally,we evaluate the effectiveness of lightweight communication-efficient strategies,including local update tuning and gradient compression,in mitigating network overhead.The experimental results reveal several key insights:(i)communication limitations can significantly degrade FL convergence in vision tasks if not properly addressed;(ii)judicious tuning of local training epochs and client participation levels enables notable improvements in both efficiency and accuracy;and(iii)communication-efficient FL strategies provide a promising pathway to balance performance with the stringent latency and reliability requirements expected in 6G.These findings highlight the synergistic role of AI and nextgeneration networks in enabling privacy-preserving,real-time vision applications,and they provide concrete design guidelines for researchers and practitioners working at the intersection of FL and 6G.展开更多
文摘Acclimatizing itself to the development of network,Math Works Inc constructed a MATLAB Web Server environment by dint of which one can browse the calculation and plots of MATLAB through Internet directly.The installation and use of the environment is introduced.A code established on the platform of MATLAB,which deals with the modal analysis of magnetic bearing system(MBS) supporting rotors of five degrees of freedom and considering the coupling of thrust bearing with radical bearings is modified to work in the environment.The purpose is to realize a remote call of the code by users through Internet for the performance analysis of the system.Such an application is very important to the concurrent design of MBS and for the utilization of distributive knowledge acquisition resources in collaborative design.The work on modification and realization is described and the results are discussed.
文摘The distributed management has become an important tendency of development for the NMS (Network Management System) with the development of Internet. Based on the analysis of CORBA (Conmon Object Request Broker Architecture) technique, we mainly discuss about the applicability of the approach by which CORBA combined with Java has been applied to the system model and Web architecture: and address the applied frame and the interface definitions that are the, key technologies for implementing the Distributed Object Computing (DOC). In addition, we also conduct the research on its advantages and disadvantages and further expected improvements. Key words distributed Web network management - CORBA - Java CLC number TP 393.07 Foundation item: Supported by the QTNG (Integrated Network Management System) Project Foundation and QT-NMS (SDH NMS) Project Foundation of Wuhan Qingtian Information Industry Co., LTD of Hubei of China (SDH.001)Biography: WANG Feng (1979-), male Master candidate, research direction: administration of network and software engineering.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
文摘The Internet has stepped into Web 2.0 era. Web 2.0 application technologies and services are rapidly developing, accompanied by the innovation and revolution of business models. This article analyzes the development of Web 2.0 technologies and their promotion role in the development of Internet services, discusses the implementation of Web 2.0 core concepts (including user participation, resource sharing and platform) by the multiple Internet application technologies, and gives the development trends of Internet application technologies.
基金the National Key R&D Program of China(No.2023YFE0208700)National Natural Sci-ence Foundation of China(No.92163109 and 52072095)+7 种基金Shenzhen Science and Technology Program(No.RCJC20231211090000001,GXWD20231129101105001)the National Natural Science Foundation of China(No.52205590)the Natural Science Foundation of Jiangsu Province(No.BK20220834)the Start-up Research Fund of Southeast University(No.RF1028623098)the State Key Laboratory of Robotics and Systems(HIT)(No.SKLRS-2024-KF-11)National Natural Science Foundation of China(No.52202348)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011491)Shenzhen Science and Technology Program(Nos.GXWD20220818224716001,KJZD20231023100302006).
文摘Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.
基金supported by the National Natural Science Foundation of China(Grant No.U24B20146)the National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation Project(No.M21034).
文摘With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.
文摘In today’s rapidly evolving digital landscape,web application security has become paramount as organizations face increasingly sophisticated cyber threats.This work presents a comprehensive methodology for implementing robust security measures in modern web applications and the proof of the Methodology applied to Vue.js,Spring Boot,and MySQL architecture.The proposed approach addresses critical security challenges through a multi-layered framework that encompasses essential security dimensions including multi-factor authentication,fine-grained authorization controls,sophisticated session management,data confidentiality and integrity protection,secure logging mechanisms,comprehensive error handling,high availability strategies,advanced input validation,and security headers implementation.Significant contributions are made to the field of web application security.First,a detailed catalogue of security requirements specifically tailored to protect web applications against contemporary threats,backed by rigorous analysis and industry best practices.Second,the methodology is validated through a carefully designed proof-of-concept implementation in a controlled environment,demonstrating the practical effectiveness of the security measures.The validation process employs cutting-edge static and dynamic analysis tools for comprehensive dependency validation and vulnerability detection,ensuring robust security coverage.The validation results confirm the prevention and avoidance of security vulnerabilities of the methodology.A key innovation of this work is the seamless integration of DevSecOps practices throughout the secure Software Development Life Cycle(SSDLC),creating a security-first mindset from initial design to deployment.By combining proactive secure coding practices with defensive security approaches,a framework is established that not only strengthens application security but also fosters a culture of security awareness within development teams.This hybrid approach ensures that security considerations are woven into every aspect of the development process,rather than being treated as an afterthought.
基金co-supported by the Fundamental Research Funds for the Central Universities,China。
文摘Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results.
文摘Making use of Microsoft Visual Studio.NET platform,hierarchical network planning is realized in working procedure time-optimization of the construction by TBM,and hierarchical network graph of the construction by TBM is drawn based on browser.Then the theory of system realization is discussed,six components of system that can be reused are explained emphatically.The realization of hierarchical network panning in Internet provides available guarantee for controlling rate of progress in large-scale or middle-sized projects.
基金supported by National Key Research & Development Program of China (2022YFC3006201)。
文摘Emergency medical services (EMS) are a vital element of the public healthcare system in China,^([1])providing an opportunity to respond to critical medical conditions and save people’s lives.^([2])The accessibility of EMS has received considerable attention in health and transport geography studies.^([3])One of the optimal gauges for evaluating the accessibility of EMS is the response time,which is defined as the time from receiving an emergency call to the arrival of an ambulance.^([4])Beijing has already reduced the response time to approximately12 min,and the next goal is to ensure that the response time across Beijing does not exceed 12 min (the information comes from the Beijing Emergency Medical Center).
基金the financial support from the Research Institute for Advanced Manufacturing(RIAM)of The Hong Kong Polytechnic University(project Nos.1-CD9F and 1-CDK3)the Research Grants Council(RGC)of Hong Kong(project Nos.25200424 and 15206223)+2 种基金the GuangDong Basic and Applied Basic Research Foundation(project No.2023A1515110709)the Startup fund(project No.1-BE9L)of the Hong Kong Polytechnic Universitysupported by grant from the Research Committee of the Hong Kong Polytechnic University under student account code RN5Y.
文摘Inspired by bacterial motility mechanisms,Magnetic Helical Miniature Robots(MHMRs)exhibit promising applications in biomedical fields due to their efficient locomotion and compatibility with biological tissues.In this review,we systematically survey the basics of MHMRs,from propulsion mechanism,magnetization and control methods to biomedical applications,aiming to provide readers with an easily understandable overview and fundamental knowledge on implementing MHMRs.The MHMRs are actuated by rotating magnetic fields,achieving steering and rotation through magnetic torque,and converting rotation into forward motion through the helical structure.Magnetization methods for MHMRs are reviewed into three types:attaching magnets,magnetic coatings,and magnetic powder doping.Additionally,this review discusses the control methods for MHMRs,covering imaging techniques,path tracking control—including classical control algorithms and increasingly popular learning-based methods,and swarm control.Subsequently,a comprehensive survey is conducted on the biomedical applications of MHMRs in the treatment of vascular diseases,drug delivery,cell delivery,and their integration with catheters.We finally provide a perspective about future challenges in MHMR research,including enhancing functional design capabilities,developing swarm-assisted independent control mechanisms,refining in vivo imaging techniques,and ensuring robust biocompatibility for safe medical use.
基金Shanghai Municipal Commission for Science and Technology,Grant/Award Number:23ZR1402500National Natural Science Foundation of China,Grant/Award Number:51973034+1 种基金National Scholarship CouncilNational Key Research and Development Program of China,Grant/Award Number:2023YFB3809800.
文摘Graphene fiber supercapacitors(GFSCs)have garnered significant attention due to their exceptional features,including high power density,rapid charge/discharge rates,prolonged cycling durability,and versatile weaving capabilities.Nevertheless,inherent challenges in graphene fibers(GFs),particularly the restricted ion-accessible specific surface area(SSA)and sluggish ion transport kinetics,hinder the achievement of optimal capacitance and rate performance.Despite existing reviews on GFSCs,a notable gap exists in thoroughly exploring the kinetics governing the energy storage process in GFSCs.This review aims to address this gap by thoroughly analyzing the energy storage mechanism,fabrication methodologies,property manipulation,and wearable applications of GFSCs.Through theoretical analysis of the energy storage process,specific parameters in advanced GF fabrication methodologies are carefully summarized,which can be used to modulate nano/micro-structures,thereby enhancing energy storage kinetics.In particular,enhanced ion storage is realized by creating more ion-accessible SSA and introducing extra-capacitive components,while accelerated ion transport is achieved by shortening the transport channel length and improving the accessibility of electrolyte ions.Building on the established structure-property relationship,several critical strategies for constructing optimal surface and structure profiles of GF electrodes are summarized.Capitalizing on the exceptional flexibility and wearability of GFSCs,the review further underscores their potential as foundational elements for constructing multifunctional e-textiles using conventional textile technologies.In conclusion,this review provides insights into current challenges and suggests potential research directions for GFSCs.
基金The author Dr.Arshiya Sajid Ansari extends the appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number(R-2025-1706).
文摘IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrained resources,as well as the growing trend of using smart gadgets,there are privacy and security issues that are not adequately managed by conventional securitymeasures.This review offers a thorough analysis of contemporary AI solutions designed to enhance security within IoT ecosystems.The intersection of AI technologies,including ML,and blockchain,with IoT privacy and security is systematically examined,focusing on their efficacy in addressing core security issues.The methodology involves a detailed exploration of existing literature and research on AI-driven privacy-preserving security mechanisms in IoT.The reviewed solutions are categorized based on their ability to tackle specific security challenges.The review highlights key advancements,evaluates their practical applications,and identifies prevailing research gaps and challenges.The findings indicate that AI solutions,particularly those leveraging ML and blockchain,offerpromising enhancements to IoT privacy and security by improving threat detection capabilities and ensuring data integrity.This paper highlights how AI technologies might strengthen IoT privacy and security and offer suggestions for upcoming studies intended to address enduring problems and improve the robustness of IoT networks.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models.
文摘The forthcoming sixth generation(6G)of mobile communication networks is envisioned to be AInative,supporting intelligent services and pervasive computing at unprecedented scale.Among the key paradigms enabling this vision,Federated Learning(FL)has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data,thereby preserving privacy and reducing the need for centralized storage.This capability is particularly attractive for vision-based applications,where image and video data are both sensitive and bandwidth-intensive.However,the integration of FL with 6G networks presents unique challenges,including communication bottlenecks,device heterogeneity,and trade-offs between model accuracy,latency,and energy consumption.In this paper,we developed a simulation-based framework to investigate the performance of FL in representative vision tasks under 6G-like environments.We formalize the system model,incorporating both the federated averaging(FedAvg)training process and a simplified communication costmodel that captures bandwidth constraints,packet loss,and variable latency across edge devices.Using standard image datasets(e.g.,MNIST,CIFAR-10)as benchmarks,we analyze how factors such as the number of participating clients,degree of data heterogeneity,and communication frequency influence convergence speed and model accuracy.Additionally,we evaluate the effectiveness of lightweight communication-efficient strategies,including local update tuning and gradient compression,in mitigating network overhead.The experimental results reveal several key insights:(i)communication limitations can significantly degrade FL convergence in vision tasks if not properly addressed;(ii)judicious tuning of local training epochs and client participation levels enables notable improvements in both efficiency and accuracy;and(iii)communication-efficient FL strategies provide a promising pathway to balance performance with the stringent latency and reliability requirements expected in 6G.These findings highlight the synergistic role of AI and nextgeneration networks in enabling privacy-preserving,real-time vision applications,and they provide concrete design guidelines for researchers and practitioners working at the intersection of FL and 6G.