This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for exam...This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.展开更多
This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is m...This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is modeled as a signal that can be sparsely denoted by high Q-factor TQWT;similarly, the transient component is modeled as a piecewise smooth signal that can be sparsely denoted using low Q-factor TQWT. Since the low and high Q-factor TQWT has low coherence, the morphological component analysis (MCA) can effectively decompose the signal into oscillatory and transient components. The corresponding optimization problem of MCA is resolved by the split augmented Lagrangian shrinkage algorithm (SALSA). The applications of the proposed method to speech, electroencephalo-graph (EEG), and electrocardiograph (ECG) signals are included.展开更多
This paper presents a fully on-chip NMOS low-dropout regulator(LDO) for portable applications with quasi floating gate pass element and fast transient response.The quasi floating gate structure makes the gate of the...This paper presents a fully on-chip NMOS low-dropout regulator(LDO) for portable applications with quasi floating gate pass element and fast transient response.The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump,which allows the charge pump to be a small economical circuit with small silicon area.In addition,a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient.The proposed LDO has been implemented in a 0.35 μm BCD process.From experimental results,the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and Iq of 395 μA.Under full-range load current step,the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV,respectively.展开更多
文摘This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.
文摘This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is modeled as a signal that can be sparsely denoted by high Q-factor TQWT;similarly, the transient component is modeled as a piecewise smooth signal that can be sparsely denoted using low Q-factor TQWT. Since the low and high Q-factor TQWT has low coherence, the morphological component analysis (MCA) can effectively decompose the signal into oscillatory and transient components. The corresponding optimization problem of MCA is resolved by the split augmented Lagrangian shrinkage algorithm (SALSA). The applications of the proposed method to speech, electroencephalo-graph (EEG), and electrocardiograph (ECG) signals are included.
文摘This paper presents a fully on-chip NMOS low-dropout regulator(LDO) for portable applications with quasi floating gate pass element and fast transient response.The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump,which allows the charge pump to be a small economical circuit with small silicon area.In addition,a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient.The proposed LDO has been implemented in a 0.35 μm BCD process.From experimental results,the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and Iq of 395 μA.Under full-range load current step,the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV,respectively.