Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms ...Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems(e.g.,real-world artificial neural network(ANN)training problems).To resolve this issue,this paper proposes a framework based on an efficient elite centroid operator.It continuously monitors the current state of the population.Once stagnation is detected,two dedicated operators,centroid-based mutation(CM)and centroid-based crossover(CX),are executed to replace the classical mutation and binomial crossover operations in DE.CM and CX are centred on the elite centroid composed of multiple elite individuals,constituting a framework consisting of elitism centroid-based operations(CMX)to improve the performance of the individuals who fall into stagnation.In CM,elite centroid provide evolutionary direction for stagnant individuals,and in CX,elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population.The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations.Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.展开更多
Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy comp...Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy components.The geometry of the weld bead(height and width)is influenced by multiple intricate parameters and variables during the manufacturing process.Accurately predicting the weld bead shape enables precise control over the surface flatness of the part,helping to prevent defects such as lack of fusion.This significantly reduces dimensional redundancy,enhances printing efficiency,and optimizes material usage.In this study,a quadratic regression prediction model for weld bead geometry was developed using the response surface methodology(RSM),with predictions generated through several machine learning models.These models included the back-propagation neural network(BPNN),support vector regression(SVR),multi-output support vector regression(MOSVR),extreme learning machine(ELM),and a differential evolution-optimized MOSVR(DE-MOSVR)model.Grid search and cross-validation techniques were utilized to identify the optimal parameters for each model to achieve the best predictive performance.A comparison of these models was conducted,followed by an evaluation of their generalization capabilities using an additional 20 sets of test data.The most accurate predictive model was selected based on a comprehensive assessment.The results showed that the DE-MOSVR model outperformed the others,achieving mean squared error,root mean squared error,mean absolute error,and R^(2) values for width(height)predictions of 0.0411(0.0041),0.2028(0.0639),0.1671(0.0550),and 0.9434(0.9433),respectively.It demonstrated the smallest deviation in the validation set,with mean deviations of 1.97% and 1.68%,respectively.The model we developed was validated through the production of prototype parts,providing valuable reference and guidance for predicting and modeling weld bead morphology in the Wire-fed LA-DED process.展开更多
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t...To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ...Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.展开更多
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to...A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
In this paper,a global optimum-based search strategy is proposed to alleviate the situation that the differential evolution(DE)usually sticks into a stagnation,especially on complex problems.It aims to reconstruct the...In this paper,a global optimum-based search strategy is proposed to alleviate the situation that the differential evolution(DE)usually sticks into a stagnation,especially on complex problems.It aims to reconstruct the balance between exploration and exploitation,and improve the search efficiency and solution quality of DE.The proposed method is activated by recording the number of recently consecutive unsuccessful global optimum updates.It takes the feedback from the global optimum,which makes the search strategy not only refine the current solution quality,but also have a change to find other promising space with better individuals.This search strategy is incorporated with various DE mutation strategies and DE variations.The experimental results indicate that the proposed method has remarkable performance in enhancing search efficiency and improving solution quality.展开更多
In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin...In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.展开更多
Identifying the geometric information of an object by analyzing the detected radiation fields is an important problem for national and global security.In the present work,an inverse radiation transport model,based on ...Identifying the geometric information of an object by analyzing the detected radiation fields is an important problem for national and global security.In the present work,an inverse radiation transport model,based on the enhanced differential evolution algorithm with global and local neighborhoods(IRT-DEGL),is developed to estimate the unknown layer thickness of the source/shield system with the gamma-ray spectrum.The framework is briefly introduced with the emphasis on handling the enhanced differential evolution algorithm.Using the simulated gamma-ray spectra,the numerical precision of the IRT-DEGL model is evaluated for one-dimensional source systems.Using the detected gamma-ray spectra,the inverse investigations for the unknown thicknesses of multiple shielding layers are performed.By comparing with the traditional gamma-ray absorption method,it is shown that the IRT-EDGL model can provide a much more accurate result and has great potential to be applied for the complicated systems.展开更多
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti...In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
Sensitivity loop shaping using add-on peak filters is a simple and effective method to reject narrow-band disturbances in hard disk drive (HDD) servo systems. The parallel peak filter is introduced to provide high-g...Sensitivity loop shaping using add-on peak filters is a simple and effective method to reject narrow-band disturbances in hard disk drive (HDD) servo systems. The parallel peak filter is introduced to provide high-gain magnitude in the concerned frequency range of open-loop transfer function. Different from almost all the known peak filters that possess second-order structures, we explore in this paper bow high-order peak filters can be designed to improve the loop shaping performance. The main idea is to replace some of the constant coefficients of common second-order peak filter by frequency-related transfer functions, and then differential evolution (DE) algorithm is adopted to perform optimal design. We creatively introduce chromosome coding and fitness function design, which are original and the key steps that lead to the success of DE applications in control system design. In other words, DE is modified to achieve a novel design for hard disk drive control. Owing to the remarkable searching ability of DE, the expected shape of sensitivity function can be achieved by incorporating the resultant high-order peak filter in parallel with baseline feedback controller. As a result, a seventh-order peak filter is designed to compensate for contact-induced vibration in a high-density HDD servo system, where the benefits of high-order filter are clearly demonstrated.展开更多
Learning control has been recognized as a powerful approach in quantum information technology. In this paper, we extend the application of differential evolution (DE) to design optimal control for various quantum sy...Learning control has been recognized as a powerful approach in quantum information technology. In this paper, we extend the application of differential evolution (DE) to design optimal control for various quantum systems. Various DE methods are introduced and analyzed, and EMSDE featuring in equally mixed strategies is employed for quantum control. Two classes of quantum control problems, including control of four-level open quantum ensembles and quantum superconducting systems, are investigated to demonstrate the performance of EMSDE for learning control of quantum systems. Numerical results verify the effectiveness of the FMSDE method for various quantum systems and show the potential for complex quantum control problems.展开更多
Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are we...Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.展开更多
We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able...We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey Glass system and the Lorenz system are also presented.展开更多
The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation oper...The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation operator is proposed.The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages.The proposed DE variant,MIDE,performs the evolution in a piecewise manner,i.e.,after every predefined evolutionary stages,MIDE adjusts its settings to enrich its diversity skills.The performance of the MIDE is validated on two different sets of benchmarks:CEC 2014 and CEC 2017(special sessions&competitions on real-parameter single objective optimization)using different performance measures.In the end,MIDE is also applied to solve constrained engineering problems.The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments.展开更多
Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differentia...Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differential evolution algorithm?based on ensemble of constraint handling techniques and multi-population?framework, called ECMPDE. First, handling three improved variants of differential evolution algorithms are dynamically matched with two constraint handling techniques through the constraint allocation mechanism. Each combination includes three variants with corresponding constraint handling technique?and these combinations are in the set. Second, the population is divided into three smaller subpopulations and one larger reward subpopulation. Then a combination with three constraint algorithms is randomly selected from the set, and the three constraint algorithms are run in three sub-populations respectively. According to the improvement of fitness value, the optimal constraint?algorithm is selected to run on the reward sub-population, which can share?information and close cooperation among populations. In order to verify the effectiveness of the proposed algorithm, 12 standard constraint optimization problems?and 10 engineering constraint optimization problems are tested. The experimental results show that ECMPDE is an effective algorithm for solving constraint optimization problems.展开更多
基金funded by National Special Project Number for International Cooperation under Grant 2015DFR11050the Applied Science and Technology Research and Development Special Fund Project of Guangdong Province under Grant 2016B010126004.
文摘Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems(e.g.,real-world artificial neural network(ANN)training problems).To resolve this issue,this paper proposes a framework based on an efficient elite centroid operator.It continuously monitors the current state of the population.Once stagnation is detected,two dedicated operators,centroid-based mutation(CM)and centroid-based crossover(CX),are executed to replace the classical mutation and binomial crossover operations in DE.CM and CX are centred on the elite centroid composed of multiple elite individuals,constituting a framework consisting of elitism centroid-based operations(CMX)to improve the performance of the individuals who fall into stagnation.In CM,elite centroid provide evolutionary direction for stagnant individuals,and in CX,elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population.The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations.Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.
基金supported by Natural Science Foundation of Shandong Province(Grant No.ZR202212010161)Natural Science Foundation of Qingdao(Grant No.23-2-1-83-zyyd-jch)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110116)the National Natural Science Foundation of China(Grant No.52405359).
文摘Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy components.The geometry of the weld bead(height and width)is influenced by multiple intricate parameters and variables during the manufacturing process.Accurately predicting the weld bead shape enables precise control over the surface flatness of the part,helping to prevent defects such as lack of fusion.This significantly reduces dimensional redundancy,enhances printing efficiency,and optimizes material usage.In this study,a quadratic regression prediction model for weld bead geometry was developed using the response surface methodology(RSM),with predictions generated through several machine learning models.These models included the back-propagation neural network(BPNN),support vector regression(SVR),multi-output support vector regression(MOSVR),extreme learning machine(ELM),and a differential evolution-optimized MOSVR(DE-MOSVR)model.Grid search and cross-validation techniques were utilized to identify the optimal parameters for each model to achieve the best predictive performance.A comparison of these models was conducted,followed by an evaluation of their generalization capabilities using an additional 20 sets of test data.The most accurate predictive model was selected based on a comprehensive assessment.The results showed that the DE-MOSVR model outperformed the others,achieving mean squared error,root mean squared error,mean absolute error,and R^(2) values for width(height)predictions of 0.0411(0.0041),0.2028(0.0639),0.1671(0.0550),and 0.9434(0.9433),respectively.It demonstrated the smallest deviation in the validation set,with mean deviations of 1.97% and 1.68%,respectively.The model we developed was validated through the production of prototype parts,providing valuable reference and guidance for predicting and modeling weld bead morphology in the Wire-fed LA-DED process.
文摘To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
文摘Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.
基金Supported by the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z 164).
文摘A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金This work was supported by the JSPS KAKENHI(JP17K12751 and JP15K00332).
文摘In this paper,a global optimum-based search strategy is proposed to alleviate the situation that the differential evolution(DE)usually sticks into a stagnation,especially on complex problems.It aims to reconstruct the balance between exploration and exploitation,and improve the search efficiency and solution quality of DE.The proposed method is activated by recording the number of recently consecutive unsuccessful global optimum updates.It takes the feedback from the global optimum,which makes the search strategy not only refine the current solution quality,but also have a change to find other promising space with better individuals.This search strategy is incorporated with various DE mutation strategies and DE variations.The experimental results indicate that the proposed method has remarkable performance in enhancing search efficiency and improving solution quality.
基金Supported by the National Basic Research Program of China (2012CB720500)the National Natural Science Foundation of China (60974008)
文摘In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.
基金supported by the CAEP foundation for Development of Science and Technology(No.2015B0103014)National Natural Science Foundation of China(No.11605163)
文摘Identifying the geometric information of an object by analyzing the detected radiation fields is an important problem for national and global security.In the present work,an inverse radiation transport model,based on the enhanced differential evolution algorithm with global and local neighborhoods(IRT-DEGL),is developed to estimate the unknown layer thickness of the source/shield system with the gamma-ray spectrum.The framework is briefly introduced with the emphasis on handling the enhanced differential evolution algorithm.Using the simulated gamma-ray spectra,the numerical precision of the IRT-DEGL model is evaluated for one-dimensional source systems.Using the detected gamma-ray spectra,the inverse investigations for the unknown thicknesses of multiple shielding layers are performed.By comparing with the traditional gamma-ray absorption method,it is shown that the IRT-EDGL model can provide a much more accurate result and has great potential to be applied for the complicated systems.
基金Project(20040533035)supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(60874070)supported by the National Natural Science Foundation of China
文摘In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金supported by National Natural Science Foundation of China(Nos.61640310 and 61433011)
文摘Sensitivity loop shaping using add-on peak filters is a simple and effective method to reject narrow-band disturbances in hard disk drive (HDD) servo systems. The parallel peak filter is introduced to provide high-gain magnitude in the concerned frequency range of open-loop transfer function. Different from almost all the known peak filters that possess second-order structures, we explore in this paper bow high-order peak filters can be designed to improve the loop shaping performance. The main idea is to replace some of the constant coefficients of common second-order peak filter by frequency-related transfer functions, and then differential evolution (DE) algorithm is adopted to perform optimal design. We creatively introduce chromosome coding and fitness function design, which are original and the key steps that lead to the success of DE applications in control system design. In other words, DE is modified to achieve a novel design for hard disk drive control. Owing to the remarkable searching ability of DE, the expected shape of sensitivity function can be achieved by incorporating the resultant high-order peak filter in parallel with baseline feedback controller. As a result, a seventh-order peak filter is designed to compensate for contact-induced vibration in a high-density HDD servo system, where the benefits of high-order filter are clearly demonstrated.
基金This paper is dedicated to Professor lan R. Petersen on the occasion of his 60th birthday. This work was supported by the National Natural Science Foundation of China (Nos. 61374092, 61432008), the National Key Research and Development Program of China (No. 2016YFD0702100) and the Australian Research Council's Discovery Projects funding scheme under Project DP130101658.
文摘Learning control has been recognized as a powerful approach in quantum information technology. In this paper, we extend the application of differential evolution (DE) to design optimal control for various quantum systems. Various DE methods are introduced and analyzed, and EMSDE featuring in equally mixed strategies is employed for quantum control. Two classes of quantum control problems, including control of four-level open quantum ensembles and quantum superconducting systems, are investigated to demonstrate the performance of EMSDE for learning control of quantum systems. Numerical results verify the effectiveness of the FMSDE method for various quantum systems and show the potential for complex quantum control problems.
基金This work was partially supported by the National Natural Science Foundation of China(62073173,61833011)the Natural Science Foundation of Jiangsu Province,China(BK20191376)the Nanjing University of Posts and Telecommunications(NY220193,NY220145)。
文摘Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976039)
文摘We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey Glass system and the Lorenz system are also presented.
基金supported by the A*STAR under its RIE2020 Advanced Manufacturing and Engineering(AME)Industry Alignment Fund-Pre-Positioning(IAF-PP)(Award A19D6a0053)the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)。
文摘The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation operator is proposed.The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages.The proposed DE variant,MIDE,performs the evolution in a piecewise manner,i.e.,after every predefined evolutionary stages,MIDE adjusts its settings to enrich its diversity skills.The performance of the MIDE is validated on two different sets of benchmarks:CEC 2014 and CEC 2017(special sessions&competitions on real-parameter single objective optimization)using different performance measures.In the end,MIDE is also applied to solve constrained engineering problems.The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments.
文摘Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differential evolution algorithm?based on ensemble of constraint handling techniques and multi-population?framework, called ECMPDE. First, handling three improved variants of differential evolution algorithms are dynamically matched with two constraint handling techniques through the constraint allocation mechanism. Each combination includes three variants with corresponding constraint handling technique?and these combinations are in the set. Second, the population is divided into three smaller subpopulations and one larger reward subpopulation. Then a combination with three constraint algorithms is randomly selected from the set, and the three constraint algorithms are run in three sub-populations respectively. According to the improvement of fitness value, the optimal constraint?algorithm is selected to run on the reward sub-population, which can share?information and close cooperation among populations. In order to verify the effectiveness of the proposed algorithm, 12 standard constraint optimization problems?and 10 engineering constraint optimization problems are tested. The experimental results show that ECMPDE is an effective algorithm for solving constraint optimization problems.