To improve the efficiency of air quality analysis and the accuracy of predictions, this paper proposes a composite method based on Vector Autoregressive (VAR) and Random Forest (RF) models. In the theoretical section,...To improve the efficiency of air quality analysis and the accuracy of predictions, this paper proposes a composite method based on Vector Autoregressive (VAR) and Random Forest (RF) models. In the theoretical section, the model introduction and estimation algorithms are provided. In the empirical analysis section, global air quality data from 2022 to 2024 are used, and the proposed method is applied. Specifically, principal component analysis (PCA) is first conducted, and then VAR and Random Forest methods are used for prediction on the reduced-dimensional data. The results show that the RMSE of the hybrid model is 45.27, significantly lower than the 49.11 of the VAR model alone, verifying its superiority. The stability and predictive performance of the model are effectively enhanced.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
文摘To improve the efficiency of air quality analysis and the accuracy of predictions, this paper proposes a composite method based on Vector Autoregressive (VAR) and Random Forest (RF) models. In the theoretical section, the model introduction and estimation algorithms are provided. In the empirical analysis section, global air quality data from 2022 to 2024 are used, and the proposed method is applied. Specifically, principal component analysis (PCA) is first conducted, and then VAR and Random Forest methods are used for prediction on the reduced-dimensional data. The results show that the RMSE of the hybrid model is 45.27, significantly lower than the 49.11 of the VAR model alone, verifying its superiority. The stability and predictive performance of the model are effectively enhanced.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.