期刊文献+
共找到141,700篇文章
< 1 2 250 >
每页显示 20 50 100
Conditional Generative Adversarial Network-Based Travel Route Recommendation
1
作者 Sunbin Shin Luong Vuong Nguyen +3 位作者 Grzegorz J.Nalepa Paulo Novais Xuan Hau Pham Jason J.Jung 《Computers, Materials & Continua》 2026年第1期1178-1217,共40页
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of... Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence. 展开更多
关键词 Travel route recommendation conditional generative adversarial network heterogeneous information network anchor-and-expand algorithm
在线阅读 下载PDF
Development of Patient-Derived Conditionally Reprogrammed 3D Breast Cancer Culture Models for Drug Sensitivity Evaluation
2
作者 Jing Cai Haoyun Zhu +4 位作者 Weiling Guo Ting Huang Pangzhou Chen Wen Zhou Ziyun Guan 《Oncology Research》 2026年第1期500-520,共21页
Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual pat... Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment. 展开更多
关键词 Patient-derived breast cancer cells conditional reprogramming hydrogel microsphere 3D culture model drug screening
暂未订购
Five-year conditional relative survival up to 10 years post-diagnosis among adolescent and young adult breast cancer patients by age,stage,and receptor subtype 被引量:1
3
作者 Noëlle J.M.C.Vrancken Peeters Daniël J.van der Meer +5 位作者 Marleen Kok Marissa C.van Maaren Marie-Jeanne T.F.D.Vrancken Peeters Sabine Siesling Winette T.A.van der Graaf Olga Husson 《Journal of the National Cancer Center》 2025年第3期297-305,共9页
Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than... Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than standard relative survival(RS).This study aims to evaluate the 5-year CRS among adolescent and young adult(AYA)breast cancer patients by age,tumor stage,and receptor subtype to guide disclosure periods for insurance.Methods Data of all females aged 18–39 years and diagnosed with invasive breast cancer between 2003 and 2021(n=13,075)were obtained from The Netherlands Cancer Registry(NCR).The five-year CRS was calculated annually up to 10 years post-diagnosis using a hybrid analysis approach.Results For the total AYA breast cancer study population the 5-year CRS exceeded 90%from diagnosis and increased beyond 95%7 years post-diagnosis.Patients aged 18–24 reached 95%9 years post-diagnosis,those aged 25–29 after 5 years,and those aged 30–34 and 35–39 after 8 years.For stage I,the 5-year CRS reached 95%from diagnosis,for stage II after 6 years,while the 5-year CRS for stages III and IV did not reach the 95%threshold during the 10-year follow-up.Triple-negative tumors exceeded 95%after 4 years,human epidermal growth factor receptor 2(HER2)positive tumors after 6 years,while hormone receptor(HR)positive tumors did not reach 95%.Conclusion Excess mortality among AYA breast cancer patients tends to be little(CRS 90%–95%)from diagnosis and becomes minimal(CRS>95%)over time compared to the general population.These results can enhance expectation management and inform policymakers,suggesting a shorter disclosure period. 展开更多
关键词 Adolescents and young adults(AYAS) Breast cancer conditional relative survival(CRS) Excess mortality Relative survival(RS) SURVIVORSHIP
暂未订购
Probabilistic Site Investigation Optimization of Gassy Soils Based on Conditional Random Field and Monte Carlo Simulation
4
作者 Shaolin Ding 《World Journal of Engineering and Technology》 2025年第1期1-11,共11页
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s... Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study. 展开更多
关键词 Gassy Soils Site Investigation UNCERTAINTY conditional Random Field Monte Carlo Simulation
在线阅读 下载PDF
A FORMULA OF CONDITIONAL ENTROPY FOR METRICS INDUCED BY PROBABILITY BI-SEQUENCES
5
作者 M.RAHIMI N.BIDABADI 《Acta Mathematica Scientia》 2025年第4期1619-1639,共21页
We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induc... We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics. 展开更多
关键词 ENTROPY conditional entropy probability bi-sequence
在线阅读 下载PDF
Cross‑sectional anomalies and conditional asset pricing models based on investor sentiment: evidence from the Chinese stock market
6
作者 Zhong‑Qiang Zhou Jiajia Wu +1 位作者 Ping Huang Xiong Xiong 《Financial Innovation》 2025年第1期2984-3007,共24页
This study examines a comprehensive set of 30 cross-sectional anomalies in the Chinese A-share market to investigate whether incorporating investor sentiment as conditioning information enhances the explanatory power ... This study examines a comprehensive set of 30 cross-sectional anomalies in the Chinese A-share market to investigate whether incorporating investor sentiment as conditioning information enhances the explanatory power of asset pricing models.Utilizing a long–short portfolio strategy and Fama–MacBeth cross-sectional regression,we find that trading-based anomalies outnumber accounting-based anomalies in the Chinese market.Our results demonstrate that conditional models significantly outperform their unconditional counterparts.Notably,investor sentiment is crucial for capturing the size anomaly when excluding observations from the COVID-19 pandemic period.Additionally,it substantially improves the ability of conditional Fama–French three-factor models to capture individual anomalies and enhances the return–prediction accuracy of conditional CAPMs.We suggest further investigating high-frequency investor sentiment-based conditional models to anticipate stock price fluctuations during extraordinary public health events. 展开更多
关键词 Cross-sectional anomalies conditional asset pricing Investor sentiment
在线阅读 下载PDF
Weighted Attribute Based Conditional Proxy Re-Encryption in the Cloud
7
作者 Xixi Yan Jing Zhang Pengyu Cheng 《Computers, Materials & Continua》 2025年第4期1399-1414,共16页
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribu... Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources. 展开更多
关键词 Cloud service conditional proxy re-encryption user revocation weighted attribute
在线阅读 下载PDF
FedCLCC:A personalized federated learning algorithm for edge cloud collaboration based on contrastive learning and conditional computing
8
作者 Kangning Yin Xinhui Ji +1 位作者 Yan Wang Zhiguo Wang 《Defence Technology(防务技术)》 2025年第1期80-93,共14页
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ... Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms. 展开更多
关键词 Federated learning Statistical heterogeneity Personalized model conditional computing Contrastive learning
在线阅读 下载PDF
Conditional relative survival:an essential tool for risk stratification of(breast)cancer patients
9
作者 Luigino Dal Maso Annalisa Trama +1 位作者 Fabiola Giudici Stefano Guzzinati 《Journal of the National Cancer Center》 2025年第6期551-552,共2页
To the editor,The article by Vrancken Peeters and colleagues,1 showing updated five-year conditional relative survival(5-year CRS)for young breast cancer patients by relevant prognostic factors and longer follow-up th... To the editor,The article by Vrancken Peeters and colleagues,1 showing updated five-year conditional relative survival(5-year CRS)for young breast cancer patients by relevant prognostic factors and longer follow-up than previous European studies,2,3 has filled an important gap in knowledge for the most common cancer among young women. 展开更多
关键词 risk stratification breast cancer prognostic factors conditional relative survival young women
暂未订购
Neural correlates of conditional reasoning dysfunction in major depression:An event-related potential study with the Wason selection task
10
作者 Jia-Xv Li Mei-Chen Lu +7 位作者 Luo-An Wu Wei Li Yu Li Xin-Ping Li Xiao-Hong Liu Xue-Zheng Gao Zhen-He Zhou Hong-Liang Zhou 《World Journal of Psychiatry》 2025年第12期107-119,共13页
BACKGROUND Patients with major depression(MD)exhibit conditional reasoning dysfunction;however,no studies on the event-related potential(ERP)characteristics of conditional reasoning in MD have been reported.AIM To inv... BACKGROUND Patients with major depression(MD)exhibit conditional reasoning dysfunction;however,no studies on the event-related potential(ERP)characteristics of conditional reasoning in MD have been reported.AIM To investigate the ERP characteristics of conditional reasoning in MD patients and explore the neural mechanism of cognitive processing.METHODS Thirty-four patients with MD and 34 healthy controls(HCs)completed ERP measurements while performing the Wason selection task(WST).The clusterbased permutation test in FieldTrip was used to compare the differences in the mean amplitudes between the patients with MD and HCs on the ERP components under different experimental conditions.Behavioral data[accuracy(ACC)and reaction times(RTs)],the ERP P100 and late positive potentials(LPPs)were analyzed.RESULTS Although the mean ACC was greater and the mean of RTs was shorter in HCs than in MD patients,the differences were not statistically significant.However,across both groups,the ACC in the precautionary WST was greater than that in the other tasks,and the RTs in the abstract task were greater than those in the other tasks.Importantly,compared with that of HCs,the P100 of the left centroparietal sites was significantly increased,and the early LPP was attenuated at parietal sites and increased at left frontocentral sites;the medium LPP and late LPP were increased at the left frontocentral sites.CONCLUSION Patients with MD have conditional reasoning dysfunction and exhibit abnormal ERP characteristics evoked by the WST,which suggests neural correlates of abnormalities in conditional reasoning function in MD patients. 展开更多
关键词 Major depression Event-related potential Wason selection task conditional reasoning Neural mechanism
暂未订购
An Extension of Conditional Nonlinear Optimal Perturbation in the Time Dimension and Its Applications in Targeted Observations
11
作者 Ziqing ZU Mu MU +1 位作者 Jiangjiang XIA Qiang WANG 《Advances in Atmospheric Sciences》 2025年第9期1783-1797,共15页
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic... The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension. 展开更多
关键词 deep-learning forecasting model conditional nonlinear optimal perturbation targeted observation sensitive area
在线阅读 下载PDF
Two Causal-Modeling Approaches to Indicative Conditionals
12
作者 ChingHui Su 《逻辑学研究》 2025年第6期43-61,共19页
Recently there have been two causal modelling approaches to indicative conditionals,i.e.extrapolationist(Deng&Lee,2021)and filterist(Liang&Wang,2022),although they all take an interventionist position on subju... Recently there have been two causal modelling approaches to indicative conditionals,i.e.extrapolationist(Deng&Lee,2021)and filterist(Liang&Wang,2022),although they all take an interventionist position on subjunctive conditionals.Motivated by the so-called OK pairs,they try to provide a convincing explanation of the intuition underlying the OK pairs.As far as we know,what they have done is to provide not only an explanation of the OK pairs,but also a way of distinguishing between indicative and subjunctive conditionals.Although we agree with their success in explaining the OK pairs within a causal modelling framework,we argue that their ways of distinguishing between indicative and subjunctive conditionals fail.Instead,we argue that their approaches can be used to distinguish between two readings of conditionals,the epistemic reading and the ontic reading.which can be applied to both indicative and subjunctive conditionals.We conclude by arguing that these two readings are related to two approaches to asking and answering causal questions:the“auses-of-effects"approach and the"effects-of-causes"approach. 展开更多
关键词 subjunctive conditionals extrapolationist causal modelling approaches epistemic reading causal modeling filterist indicative subjunctive con ok pairs
在线阅读 下载PDF
Optimal Receiver Operating Characteristic Curve of Classical Conditional Power under Normal Models
13
作者 ZHANG Ying-Ying 《应用概率统计》 北大核心 2025年第2期277-304,共28页
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ... A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP. 展开更多
关键词 area under the curve(AUC) classical conditional power(CCP) go/no go decisions historical and interim data receiver operating characteristic(ROC)curve
在线阅读 下载PDF
The evolving distribution of humidity conditional on temperature and implications for compound heat extremes across China in a warming world
14
作者 Caixia Liang Jiacan Yuan 《Atmospheric and Oceanic Science Letters》 2025年第6期9-14,共6页
The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availabi... The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availability and is constrained by air temperature,it is important to project the changes in the distribution of atmospheric humidity conditional on air temperature as the climate continuously warms.Here,a non-crossing quantile smoothing spline is employed to build quantile regression models emulating conditional distributions of dew point(a measure of humidity)on local temperature evolving with escalating global mean surface temperature.By applying these models to 297 weather stations in seven regions in China,the study analyzes historical trends of humid-heat and dry-hot days,and projects their changes under global warming of 2.0℃ and 4.5℃.In response to global warming,rising trends of humid-heat extremes,while weakening trends of dry-hot extremes,are observed at most stations in Northeast China.Additionally,results indicate an increasing trend in dry-hot extremes at numerous stations across central China,but a rise in humid-heat extremes over Northwest China and coastal regions.These trends found in the current climate state are projected to intensify under 2.0℃ and 4.5℃ warming,possibly influenced by the heterogeneous variations in precipitation,soil moisture,and water vapor fluxes.Requiring much lower computational resources than coupled climate models,these quantile regression models can further project compound humidity and temperature extremes in response to different levels of global warming,potentially informing the risk management of compound humid-heat extremes on a local scale. 展开更多
关键词 Global warming conditional distribution of dew point on temperature Non-crossing quantile smoothing spline model Compound heat extremes
在线阅读 下载PDF
Semantic role labeling based on conditional random fields 被引量:9
15
作者 于江德 樊孝忠 +1 位作者 庞文博 余正涛 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期361-364,共4页
Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow ... Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling. 展开更多
关键词 semantic role labeling conditional random fields parameter estimation feature selection
在线阅读 下载PDF
TONE MODELING BASED ON HIDDEN CONDITIONAL RANDOM FIELDS AND DISCRIMINATIVE MODEL WEIGHT TRAINING 被引量:1
16
作者 黄浩 朱杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第1期43-50,共8页
The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and d... The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations. 展开更多
关键词 speech recognition MODELS hidden conditional random fields minimum phone error
在线阅读 下载PDF
SOLVABILITY RESULTS OF A CONDITIONAL INPUT-OUTPUT EQUATION BASED ON A TYPE OF NONLINEAR LEONTIEF MODEL
17
作者 胡问鸣 刘颖范 沙春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期224-229,共6页
A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are p... A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark. 展开更多
关键词 conditional Leontief model input-output equation positive (negative) boundary assumption nonlinear analysis SOLVABILITY continuous disturbance
在线阅读 下载PDF
Ensemble Forecasts of Tropical Cyclone Track with Orthogonal Conditional Nonlinear Optimal Perturbations 被引量:15
18
作者 Zhenhua HUO Wansuo DUAN Feifan ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期231-247,共17页
This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–Nati... This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error. 展开更多
关键词 ENSEMBLE FORECAST initial PERTURBATION conditional nonlinear optimal PERTURBATION TROPICAL CYCLONE
在线阅读 下载PDF
Application of the Conditional Nonlinear Optimal Perturbation Method to the Predictability Study of the Kuroshio Large Meander 被引量:25
19
作者 WANG Qiang MU Mu Henk A.DIJKSTRA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第1期118-134,共17页
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simu... A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates. 展开更多
关键词 conditional nonlinear optimal perturbation Kuroshio large meander PREDICTABILITY model parameters
在线阅读 下载PDF
Identification of unconditional and conditional QTL for oil, protein and starch content in maize 被引量:10
20
作者 Yuqiu Guo Xiaohong Yang +4 位作者 Subhash Chander Jianbing Yan Jun Zhang Tongming Song Jiansheng Li 《The Crop Journal》 SCIE CAS 2013年第1期34-42,共9页
Oil, protein and starch are key chemical components of maize kernels. A population of 245 recombinant inbred lines(RILs) derived from a cross between a high-oil inbred line, By804, and a regular inbred line, B73, was ... Oil, protein and starch are key chemical components of maize kernels. A population of 245 recombinant inbred lines(RILs) derived from a cross between a high-oil inbred line, By804, and a regular inbred line, B73, was used to dissect the genetic interrelationships among oil, starch and protein content at the individual QTL level by unconditional and conditional QTL mapping. Combined phenotypic data over two years with a genetic linkage map constructed using 236 markers, nine, five and eight unconditional QTL were detected for oil, protein and starch content, respectively. Some QTL for oil, protein and starch content were clustered in the same genomic regions and the direction of their effects was consistent with the sign of their correlation. In conditional QTL mapping, 37(29/8) unconditional QTL were not detected or showed reduced effects, four QTL demonstrated similar effects under unconditional and conditional QTL mapping, and 17 additional QTL were identified by conditional QTL mapping. These results imply that there is a strong genetic relationship among oil, protein and starch content in maize kernels. The information generated in the present investigation could be helpful in marker-assisted breeding for maize varieties with desirable kernel quality traits. 展开更多
关键词 ZEA mays OIL Protein STARCH Unconditional QTL conditional QTL
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部