期刊文献+
共找到19,319篇文章
< 1 2 250 >
每页显示 20 50 100
基于深度学习的无人机航拍图像小目标检测研究进展 被引量:8
1
作者 吴一全 童康 《航空学报》 北大核心 2025年第3期174-200,共27页
基于深度学习的无人机航拍图像小目标检测在军事情报侦察、战场监视和评估、军事目标捕获与验证、智能交通治理、基础设施检查和维护、灾害防治、搜索和救援、农作物管理与分析、生态保护和监测等领域具有广泛应用,近年来已成为当下的... 基于深度学习的无人机航拍图像小目标检测在军事情报侦察、战场监视和评估、军事目标捕获与验证、智能交通治理、基础设施检查和维护、灾害防治、搜索和救援、农作物管理与分析、生态保护和监测等领域具有广泛应用,近年来已成为当下的研究热点,故对近5年基于深度学习的无人机航拍图像小目标检测展开全面深入的调查。首先介绍无人机航拍图像小目标检测定义与面临的挑战。其次重点从判别性特征学习、超分辨率技术、实时轻量化检测、其他改进思路这4个方面详细阐述了无人机航拍图像小目标检测方法。然后系统总结无人机航拍图像小目标检测数据集,并基于VisDrone挑战赛深入分析不同算法的性能。最后全面呈现无人机航拍图像小目标检测在军事和民生领域的具体应用,讨论其未来潜在的发展方向,并指出了无人机航拍的一些担忧。期望该综述可以启发相关研究人员,进一步推动基于深度学习的无人机航拍图像小目标检测的发展。 展开更多
关键词 目标检测 无人机(UAV) 航拍图像 深度学习 性能评估 目标检测应用
原文传递
自监督的两阶段广义小样本目标检测算法 被引量:1
2
作者 段立娟 张子晨 张广勇 《信号处理》 北大核心 2025年第2期370-381,共12页
深度学习技术在目标检测领域取得了巨大进展,但其优异的性能建立在大量精确标注的数据集之上。在样本稀缺的特定领域,如国防海上安全和医学等领域,获取具有标注的数据尤为困难。因此,小样本目标检测领域因其能够应对样本稀疏性所带来的... 深度学习技术在目标检测领域取得了巨大进展,但其优异的性能建立在大量精确标注的数据集之上。在样本稀缺的特定领域,如国防海上安全和医学等领域,获取具有标注的数据尤为困难。因此,小样本目标检测领域因其能够应对样本稀疏性所带来的挑战而得到学术界的广泛研究。该领域的研究目标是得到能够从极其有限的样本中提取知识并实现高效目标检测的算法框架。然而,由于新类样本的稀缺性,其与基类之间存在着显著的分布差异,导致了小样本目标检测任务的准确度受限。此外,在对模型应用新类进行微调的过程中,由于新类与基类的不重叠性,模型学习新类的特征知识的过程中会存在大量的梯度更新,导致基类的特征知识被遗忘的问题,从而降低模型的整体性能。针对新类别样本稀缺的问题,本研究采用自监督学习策略。自监督学习,无须依赖标注信息,便于构建代理任务以进行模型训练,是缓解小样本目标检测样本稀缺问题的有效方案。为了避免模型在学习新类特征知识后出现基类灾难性遗忘的问题,本文将自监督学习与两阶段的目标检测器相结合。通过在类别域应用潜在特征来表示各个类别的特征信息,通过动态更新策略在学习新类别的过程中进一步优化特征,并借助检测框域构建良好的代理任务提升回归框的精准度。本研究在PASCAL VOC数据集和MS COCO数据集上进行大量的实验验证,实验结果表明,无论是在新类性能方面还是总体性能方面,本研究所提出的方法相较于其他多个小样本目标检测模型均展现出更加优越的性能表现。 展开更多
关键词 深度学习 自监督学习 小样本目标检测 广义小样本目标检测
在线阅读 下载PDF
基于单阶段半监督目标检测的建筑工人检测算法 被引量:1
3
作者 方莉 赵志峰 +2 位作者 严铮 戴振国 陈国栋 《微电子学与计算机》 2025年第2期20-30,共11页
建筑工人目标检测对于提升建筑施工安全具有重要的应用价值。随着智慧工地的推广,施工区域的视频监控覆盖率不断增加,获取大量未标注的建筑工人图像变得更为便捷,而有标注数据图像依然稀缺而昂贵。半监督学习方法是解决有标注数据缺乏... 建筑工人目标检测对于提升建筑施工安全具有重要的应用价值。随着智慧工地的推广,施工区域的视频监控覆盖率不断增加,获取大量未标注的建筑工人图像变得更为便捷,而有标注数据图像依然稀缺而昂贵。半监督学习方法是解决有标注数据缺乏问题的有效办法。然而,施工环境中存在着环境混乱、目标遮挡以及监控画面可视度低等问题,导致半监督目标检测模型在伪标签生成阶段难以平衡数量与质量。已有的半监督目标检测算法大多基于两阶段目标检测模型设计,未能满足对建筑工人检测实时性的要求。为了解决上述问题,提出了一种针对施工场景设计的单阶段半监督建筑工人目标检测算法。首先,将半监督目标检测应用于建筑工人目标检测任务,有效解决了标注数据缺乏的问题。其次,提出软阈值优化方法,为低置信样本分配权重,从而扩充伪标签的数量。接着,引入图像信息熵概念来评估样本检测难度,并提出自适应阈值选择算法以根据样本难度调整伪标签的阈值,进而提高训练初期的伪标签质量。最后,通过增加残差特征金字塔网络和上下文增强模块提升对小目标的检测能力。实验证明,在自建的施工区域建筑工人检测数据集上,所提出的算法在解决单阶段半监督建筑工人目标检测问题方面表现出显著优势。 展开更多
关键词 建筑工人目标检测 半监督目标检测 数量质量权衡 单阶段目标检测
在线阅读 下载PDF
红外弱小目标检测方法及研究进展
4
作者 李果 马昊杰 +1 位作者 李泽宇 郭成飞 《红外》 2025年第10期1-22,68,共23页
基于红外探测系统的目标检测技术在安防、预警等领域得到了广泛应用。然而,由于红外弱小目标具有信号弱和特征尺度小的特点,在面对复杂应用场景时容易出现漏检、误检、虚警等问题。目前,基于传统图像处理方法以及基于深度学习算法在红... 基于红外探测系统的目标检测技术在安防、预警等领域得到了广泛应用。然而,由于红外弱小目标具有信号弱和特征尺度小的特点,在面对复杂应用场景时容易出现漏检、误检、虚警等问题。目前,基于传统图像处理方法以及基于深度学习算法在红外弱小目标检测方面取得了重大进展。主要讨论了红外弱小目标检测方法的最新研究进展,涵盖了基于单帧检测方法、多帧检测方法以及深度学习方法,分析了现有技术的优势和局限性,总结讨论了未来红外弱小目标检测算法的发展方向。 展开更多
关键词 红外成像 红外探测 单帧目标检测 多帧目标检测 深度学习目标检测
在线阅读 下载PDF
融合多尺度特征的航拍目标检测算法
5
作者 杨路 裴俊莹 《系统仿真学报》 北大核心 2025年第6期1486-1498,共13页
为解决无人机航拍图像中小目标样本居多,但可提取特征信息少,不利于提升航拍目标检测精度问题,提出一种基于YOLOv8s改进的航拍小目标检测算法。将可变形卷积应用于主干网络特征提取模块,自适应感受目标在不同位置和尺度上的细节信息;提... 为解决无人机航拍图像中小目标样本居多,但可提取特征信息少,不利于提升航拍目标检测精度问题,提出一种基于YOLOv8s改进的航拍小目标检测算法。将可变形卷积应用于主干网络特征提取模块,自适应感受目标在不同位置和尺度上的细节信息;提出包含特征收集模块和信息融合模块的多层次信息融合功能块,通过多层次信息融合功能块中的特征收集模块对主干网络不同尺度的特征信息进行提取和增强,获取精细的全局特征,利用信息融合模块将上下文丰富的语义信息注入到小目标检测层,实现局部信息和全局信息的融合,并将融合后的特征输入到检测网络中,得到检测结果。结果表明:所提算法的识别平均准确率和召回率相较于基线模型提升了6%和4.3%;相比于主流的检测算法,改进目标检测算法的小目标检测平均精度最高。 展开更多
关键词 航拍图像 可变形卷积 目标检测 多尺度特征融合 目标检测
原文传递
改进的YOLOv8无人机小目标检测算法
6
作者 王燕妮 张婧菲 《探测与控制学报》 北大核心 2025年第5期44-50,共7页
针对YOLOv8算法在无人机视角下小目标性能不佳的问题,提出一种改进后的YOLOv8-NDTiny算法。改进原有的CIoU损失函数,引入NWD损失函数,提高算法对于小目标的敏感度;在保持算法原有参数量的同时,将原有C2f模块中的卷积模块替换成可变形卷... 针对YOLOv8算法在无人机视角下小目标性能不佳的问题,提出一种改进后的YOLOv8-NDTiny算法。改进原有的CIoU损失函数,引入NWD损失函数,提高算法对于小目标的敏感度;在保持算法原有参数量的同时,将原有C2f模块中的卷积模块替换成可变形卷积,使得模型能够适应复杂的场景;优化了颈部结构,将原有的检测头替换成小目标检测层,使模型更加轻量化,并提高网络对小目标的感知能力。实验数据表明,改进后的算法相比原算法在VisDrone2019数据集上mAP@0.5和mAP@0.5:0.95分别提高了2.4%和1.8%,并且参数量为原先的71%。 展开更多
关键词 目标检测 NWD损失函数 目标检测 可变形卷积
在线阅读 下载PDF
残差变分编码流实现的小样本目标检测
7
作者 徐芳 陈壹华 +3 位作者 余松森 陈榕榕 曾易文浩 杨明樟 《微电子学与计算机》 2025年第6期54-66,共13页
现有的小样本目标检测方法通常将支持集的图像编码到低维特征空间,以获取类别原型,作为查询图像特征与支持集图像特征之间相似性比较的依据。针对现有小样本目标检测方法计算得出的类别原型对类间方差敏感,提取到的特征缺乏代表性,导致... 现有的小样本目标检测方法通常将支持集的图像编码到低维特征空间,以获取类别原型,作为查询图像特征与支持集图像特征之间相似性比较的依据。针对现有小样本目标检测方法计算得出的类别原型对类间方差敏感,提取到的特征缺乏代表性,导致模型检测和泛化性能损害的问题,提出了残差变分编码流(Residual Variational Encoder Flow, RVF)方法,能够在数据稀缺的情况下学习类别的潜在结构,生成更鲁棒的特征分布。引入了特征交叉融合(Non-linear Feature Crossing Aggregation, NFC)模块,捕捉特征之间复杂的非线性关系。通过解耦检测头中的分类和回归任务,并改进分类分支,显著提升了检测性能。在PASCAL VOC2007和PASCAL VOC2012数据集上的实验证明了提出方法的有效性。实验结果表明:所提出的残差变分编码流模型在split1、split2、split3子集的1、2、3 shot实验中表现最佳,平均精度分别达到64.6%、47.1%和57.1%。比之前的方法相比,在split1、split2、split3子集中精度分别提高了2.5%、1.8%、0.8%,验证了提出方法在极低样本量的情况下的有效性。 展开更多
关键词 小样本学习 目标检测 小样本目标检测 特征融合
在线阅读 下载PDF
改进YOLOv8的无人机航拍图像目标检测算法 被引量:6
8
作者 梁燕 何孝武 +1 位作者 邵凯 陈俊宏 《计算机工程与应用》 北大核心 2025年第1期121-130,共10页
针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EF... 针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EFEM),避免小目标特征消失在冗余信息中。在颈部设计了一种双重跨尺度加权特征融合方法(dual cross-scale weighted feature-fusion,DCWF),融合多尺度信息的同时抑制噪声干扰,提升特征表达能力。通过构建一种参数共享检测头(parameter-shared detection header,PSDH),使回归和分类任务实现参数共享,保证检测精度的同时有效降低了模型的参数量。所提模型在VisDrone-2019数据集上的精度(P)和召回率(R)分别达到54.0%、42.5%;相比于原始YOLOv8s模型,mAP50提高了5.0个百分点,达到44.5%,且参数量减少了55.8%,仅有4.94×106;在DOTAv1.0遥感数据集上,mAP50达到71.9%,仍具有较好的泛化能力。 展开更多
关键词 目标检测 无人机航拍图像 YOLOv8 目标 特征融合
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测 被引量:3
9
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
基于FPGA的MobileNetV1目标检测加速器设计 被引量:3
10
作者 严飞 郑绪文 +2 位作者 孟川 李楚 刘银萍 《现代电子技术》 北大核心 2025年第1期151-156,共6页
卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分... 卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分辨率超参数以及网络参数定点化来减少网络模型的参数量和计算量;其次,对卷积层和批量归一化层进行融合,减少网络复杂性,提升网络计算速度;然后,设计一种八通道核间并行卷积计算引擎,每个通道利用行缓存乘法和加法树结构实现卷积运算;最后,利用FPGA并行计算和流水线结构,通过对此八通道卷积计算引擎合理的复用完成三种不同类型的卷积计算,减少硬件资源使用量、降低功耗。实验结果表明,该设计可以对MobileNetV1目标检测进行硬件加速,帧率可达56.7 f/s,功耗仅为0.603 W。 展开更多
关键词 卷积神经网络 目标检测 FPGA MobileNetV1 并行计算 硬件加速
在线阅读 下载PDF
LMUAV-YOLOv8:低空无人机视觉目标检测轻量化网络 被引量:6
11
作者 董一兵 曾辉 侯少杰 《计算机工程与应用》 北大核心 2025年第3期94-110,共17页
针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了... 针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了解释。设计了一种轻量化的特征融合网络(UAV_RepGFPN),提出新的特征融合路径以及特征融合模块DBB_GELAN,降低参数量和计算量的同时,提高特征融合网络的性能。使用部分卷积(PConv)和三重注意力机制(Triplet Attention)构建特征提取模块(FTA_C2f),并引入ADown下采样模块,通过对输入特征图维度的重新排列和细粒度调整,以提升模型中深层网络对空间特征的捕捉能力,并进一步降低参数量和计算量。优化YOLOv9的可编程梯度信息(programmable gradient information,PGI)策略,设计基于上下文引导(Context_guided)的可逆架构,并额外生成三个辅助检测头,提出UAV_PGI可编程梯度方法,避免传统深度监督中多路径特征集成可能导致的语义信息损失。为了验证模型的有效性及泛化能力,在VisDrone 2019测试集上开展了对比实验,结果显示,与YOLOv8s相比,LMUAV-YOLOv8s的准确度、召回率、mAP@0.5和mAP@0.5:0.95等指标分别提升了4.2、3.9、5.1和3.0个百分点,同时参数量减少了63.9%,计算量仅增加0.4 GFLOPs,实现了检测性能与资源消耗的良好平衡。基于NVIDIA Jetson Xavier NX嵌入式平台的推理实验结果显示:与基线模型相比,该算法能够在满足实时检测要求的条件下,获得更高的检测精度,对于无人机实时目标检测场景具有较好的适用性。借助类激活图,对算法的决策过程进行了可视化分析,结果表明,该模型具备更优异的小尺度特征提取和高分辨率处理能力。 展开更多
关键词 目标检测 多尺度 轻量化 YOLOv8 可编程梯度信息
在线阅读 下载PDF
基于UMS-YOLO v7的面向样本不均衡的水下生物多尺度目标检测方法 被引量:3
12
作者 张明华 黄基萍 +2 位作者 宋巍 肖启华 赵丹枫 《农业机械学报》 北大核心 2025年第1期388-396,409,共10页
针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野... 针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野上捕获多尺度目标特征,使得提取的特征信息更加全面;其次,使用轻量级的上采样算子融合上下文信息,提高模型对目标的特征学习能力;最后,通过结合Wise-IoU和归一化Wasserstein距离两种相似性度量,提高了不同尺度目标的定位精度,同时降低了多尺度样本分布不均衡对模型的影响。实验结果表明,该模型相较于当前其他模型在检测精度方面表现出明显的提升,在RUOD和DUO数据集上平均精度均值分别达到64.5%和68.9%。与YOLO v7模型相比,UMS-YOLO v7提高了多种尺度目标检测精度,在DUO数据集上,针对大、中、小3种尺度目标平均精度均值分别提升8.3、4.8、12.5个百分点,其中小目标提升效果最为显著。与现有的其他模型相比,改进的模型具有更高的检测精度,更适用于水下生物多尺度目标检测任务,并且针对不同数据分布的样本具有泛化性和鲁棒性。 展开更多
关键词 水下生物 多尺度目标检测 YOLO v7 空洞卷积 上采样算子 相似性度量
在线阅读 下载PDF
基于改进YOLOv8的无人机红外目标检测算法 被引量:2
13
作者 张瑞芳 刘占占 +1 位作者 程小辉 赵虹 《电子测量技术》 北大核心 2025年第7期46-54,共9页
针对无人机航拍红外图像中因为噪声干扰、光照波动和复杂背景带来的目标检测困难的问题,提出了一种基于YOLOv8的无人机红外目标检测算法SDE-YOLOv8。首先,引入了YOLOv10中的SCDown模块让每个尺度最大化地保留上下文的语义信息;其次,引... 针对无人机航拍红外图像中因为噪声干扰、光照波动和复杂背景带来的目标检测困难的问题,提出了一种基于YOLOv8的无人机红外目标检测算法SDE-YOLOv8。首先,引入了YOLOv10中的SCDown模块让每个尺度最大化地保留上下文的语义信息;其次,引入动态上采样器DySample来提升模型对于图像细节的敏感度;同时引入三重注意力机制改进C2f,来强化模型对空间和通道维度之间关系的理解和复杂数据的处理能力;最后,设计了轻量级解耦头Efficient_Head模块,确保了检测精度的同时大幅度减少了模型参数。实验结果表明,改进后的算法mAP50达到83.7%,较YOLOv8n提高了4.2%,精确率提升了1.2%,召回率提升了3.8%,浮点运算次数下降了2.5%,FPS达到了323.17 fps的检测速度,充分说明改进算法整体性能优于其他主流算法,能更好的完成无人机红外目标检测任务。 展开更多
关键词 红外目标检测 YOLOv8 注意力机制 语义信息 无人机
原文传递
基于YOLOv8目标检测器的对抗攻击方案设计 被引量:3
14
作者 李秀滢 赵海淇 +2 位作者 陈雪松 张健毅 赵成 《信息安全研究》 北大核心 2025年第3期221-230,共10页
目前,基于人工智能目标检测技术的摄像头得到了广泛的应用.而在现实世界中,基于人工智能的目标检测模型容易受到对抗样本攻击.现有的对抗样本攻击方案都是针对早版本的目标检测模型而设计的,利用这些方案去攻击最新的YOLOv8目标检测器... 目前,基于人工智能目标检测技术的摄像头得到了广泛的应用.而在现实世界中,基于人工智能的目标检测模型容易受到对抗样本攻击.现有的对抗样本攻击方案都是针对早版本的目标检测模型而设计的,利用这些方案去攻击最新的YOLOv8目标检测器并不能取得很好的攻击效果.为解决这一问题,针对YOLOv8目标检测器设计了一个全新的对抗补丁攻击方案.该方案在最小化置信度输出的基础上,引入了EMA注意力机制强化补丁生成时的特征提取,进而增强了攻击效果.实验证明该方案具有较优异的攻击效果和迁移性,将该方案形成的对抗补丁打印在衣服上进行验证测试,同样获得较优异的攻击效果,表明该方案具有较强的实用性. 展开更多
关键词 深度学习 对抗样本 YOLOv8 目标检测 对抗补丁
在线阅读 下载PDF
基于LDF-YOLO的小目标检测方法 被引量:1
15
作者 刘洋 任旭虎 +1 位作者 刘宝弟 刘伟锋 《电子测量技术》 北大核心 2025年第12期156-165,共10页
小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络... 小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络中引入了特征转换模块,设计了针对微小物体的检测头LP-Detect;其次,借鉴残差门控机制和局部特征增强机制设计了LR-C2f模块,增强模型提取局部特征的能力;最后,融入了局部特征增强模块,以强化骨干网络提取小目标信息的能力。在公开数据集Tiny Person上,LDF-YOLO比原YOLOv8在mAP0.5上提高了4.5%,召回率提高了5.5%,实验结果验证了改进方法的有效性,同时在NWPU VHR-10和VisDrone2019数据集上做了泛化对比实验,经实验表明各项指标均有提升。 展开更多
关键词 目标检测 YOLOv8 残差门控机制 特征转换 特征融合
原文传递
基于改进YOLOv7-tiny的无人机航拍图像小目标检测算法 被引量:3
16
作者 张光华 李聪发 +1 位作者 李钢硬 卢为党 《工程科学与技术》 北大核心 2025年第3期235-246,共12页
无人机航拍图像目标检测是无人机应用的一项重要技术,针对无人机航拍图像中目标尺度变化大、小尺寸目标分布密集、背景复杂而导致的漏检和误检问题,本文提出一种基于YOLOv7-tiny带ConvMixer检测头的无人机航拍图像小目标检测算法。首先... 无人机航拍图像目标检测是无人机应用的一项重要技术,针对无人机航拍图像中目标尺度变化大、小尺寸目标分布密集、背景复杂而导致的漏检和误检问题,本文提出一种基于YOLOv7-tiny带ConvMixer检测头的无人机航拍图像小目标检测算法。首先,将激活函数LeakyReLU替换为SiLU,弥补LeakyReLU缺少的非线性表达,提升模型训练时的收敛速度与模型泛化能力;其次,为了增强对多尺度目标的特征提取能力,额外设计了小目标检测层,并衍生出一个微小目标检测头,增大了模型感受野,更好地解决目标尺度剧烈变化带来的大尺度方差问题,提升了小目标的检测能力;此外,在预测头部分集成ConvMixer层,ConvMixer中的深度卷积和逐点卷积有助于找到传递给预测头的特征信息中的空间和通道关系,提升对微小目标的处理能力;最后,将YOLOv7-tiny的耦合检测头替换为更高效的解耦头,对定位与分类任务解耦出单独的特征通道,增强对目标的分类和定位能力。为了全面验证每个改进点的有效性,本文从两个方向设计了消融实验,并对比分析了改进算法与其他算法的检测性能。实验结果表明,本文算法在Visdrone2021数据集上平均精度均值(mAP)达到40.9%,较基线算法提升了3.7%,模型内存为28.2 MB,检测速度达到35.8帧/s,改进算法综合性能与对比的主流先进算法相比更优。通过检测效果分析可知,本文算法在无人机航拍图像检测上的误检和漏检问题得到较大改善。综上,本文算法的准确性和实时性能胜任航拍图像小目标检测任务。 展开更多
关键词 无人机航拍图像 目标检测 SiLU ConvMixer 更高效的解耦头
在线阅读 下载PDF
基于多尺度融合和高分辨特征增强的无人机航拍目标检测 被引量:4
17
作者 陈志旺 肖迪创 +2 位作者 吕昌昊 李思哲 彭勇 《控制与决策》 北大核心 2025年第7期2290-2299,共10页
无人机飞行高度的动态变化使得航拍图像中往往包含大量小目标,同时目标尺度变化显著,这些问题给目标检测任务带来了挑战.针对上述问题,提出一种基于多尺度融合和高分辨特征增强的无人机航拍目标检测方法.首先,在骨干网络中引入多尺度结... 无人机飞行高度的动态变化使得航拍图像中往往包含大量小目标,同时目标尺度变化显著,这些问题给目标检测任务带来了挑战.针对上述问题,提出一种基于多尺度融合和高分辨特征增强的无人机航拍目标检测方法.首先,在骨干网络中引入多尺度结构重参数化特征提取模块,利用普通卷积块和结构重参数化的大核卷积块对多个分支进行不同尺度的卷积运算,有效提取不同感受野下的特征信息;然后,在颈部网络中引入基于特征金字塔网络的多维特征自适应融合模块,以优化其自下而上的特征聚合过程,实现对浅层特征中的精细细节和深层特征中的上下文信息的自适应选择,从而更有效地应对目标尺度显著变化;最后,在颈部网络中引入多尺度特征融合小目标增强模块,以捕捉无人机航拍图像中小目标物体在不同尺度上的变化.通过在VisDrone2019和TinyPerson两个公开数据集上进行大量的实验,表明了所提出方法的有效性和优越性. 展开更多
关键词 无人机航拍图像 目标检测 结构重参数化 多维特征自适应融合 高分辨特征增强
原文传递
改进YOLOv8的无人机航拍小目标检测算法 被引量:2
18
作者 许景科 索祥龙 周磊 《计算机工程与应用》 北大核心 2025年第11期119-131,共13页
在无人机航拍图像目标检测任务中,存在小目标多且分布密集,目标背景复杂,类别样本数量不平衡,无人机算力偏低等问题。为此提出一种改进YOLOv8的算法MFF-YOLOv8(multi-feature fusion YOLOv8)。在C2f模块的Bottleneck模块中融合可变形卷... 在无人机航拍图像目标检测任务中,存在小目标多且分布密集,目标背景复杂,类别样本数量不平衡,无人机算力偏低等问题。为此提出一种改进YOLOv8的算法MFF-YOLOv8(multi-feature fusion YOLOv8)。在C2f模块的Bottleneck模块中融合可变形卷积DCNv3(deformable convolution v3),增强模型主干部分的特征提取能力。设计了一种新的MFFPN(multi-feature fusion pyramid network)特征融合网络结构,增加更多特征融合路线,保留更多的底层特征图细节和特征,提高模型对小目标的检测能力。增加P2小目标检测层并优化原有的P5检测层,增强了对小目标的检测精度并降低参数量。最后,引入动态头Dyhead(dynamic head)进一步增强模型的检测精度,在Visdrone2019公共数据集的实验中,MFF-YOLOv8s算法的检测精度mAP50和mAP50:95相比YOLOv8s分别提高10.2个百分点和7.1个百分点,参数量降低77.04%,检测精度超越YOLOv11,满足了无人机平台对精度和轻量化的需求。 展开更多
关键词 YOLOv8 目标检测 多尺度特征融合 轻量化
在线阅读 下载PDF
深度学习驱动下的目标检测研究进展综述 被引量:8
19
作者 山显英 张琳 李泽慧 《计算机工程与应用》 北大核心 2025年第1期24-41,共18页
近年来,深度学习在GPU高性能计算能力的加持下得到了迅速推广,并在安防、医疗、工业等领域实现了广泛应用。目标检测模型的性能也在稳步提高,从传统的目标检测方法逐渐过渡到基于卷积神经网络(CNN)深度学习的进一步应用,极大地节省了人... 近年来,深度学习在GPU高性能计算能力的加持下得到了迅速推广,并在安防、医疗、工业等领域实现了广泛应用。目标检测模型的性能也在稳步提高,从传统的目标检测方法逐渐过渡到基于卷积神经网络(CNN)深度学习的进一步应用,极大地节省了人力物力。通过参考大量文献,按照两阶段脉络梳理了目标检测的发展历程以及近年深度学习在目标检测领域内的研究进展,对比了在不同数据集上模型网络的性能,总结不同方法的优势与不足,并对领域内重要数据集作了归纳,还对目标检测算法的落地效果做了总结,特别是生活与科技中的实际应用(无人驾驶、医学图像、遥感等)。最后,还对深度学习驱动下目标检测在未来研究上的机遇和挑战作了展望。 展开更多
关键词 目标检测 卷积神经网络 单阶段 两阶段 目标检测应用
在线阅读 下载PDF
DPRT-YOLO:智能网联汽车复杂驾驶环境实时目标检测器 被引量:1
20
作者 董一兵 曾辉 +2 位作者 李建科 侯少杰 石磊 《计算机工程与应用》 北大核心 2025年第14期148-162,共15页
目标检测是智能网联汽车视觉感知系统的一项基本任务,可为先进驾驶辅助系统提供基础数据和决策依据。然而,在低光照和恶劣天气等复杂环境中,车载目标检测算法面临小目标检测性能不佳、漏检率和误检率偏高的挑战。针对这一挑战,发展了一... 目标检测是智能网联汽车视觉感知系统的一项基本任务,可为先进驾驶辅助系统提供基础数据和决策依据。然而,在低光照和恶劣天气等复杂环境中,车载目标检测算法面临小目标检测性能不佳、漏检率和误检率偏高的挑战。针对这一挑战,发展了一种面向智能网联汽车的实时目标检测器(DPRT-YOLO),通过对流行的YOLOv10模型进行改造,使其更加适用于复杂驾驶环境中的目标检测任务,并通过在NVIDIA边缘计算平台上开展消融和对比实验,验证了算法的有效性。设计了增强加权多分支特征融合网络(EWMFFN),引入浅层加权融合和多分支加权融合模块,消除特征融合过程中的层间干扰,设计星形拓扑特征交互结构,提升模型对小尺度目标的检测能力,同时保持了网络结构的轻量化设计。融合卷积门控线性单元(convolutional gated linear units,CGLU)与卷积加法自注意力(convolutional additive token mixer,CATM),通过局部-全局双通路机制建立小目标尺度信息的长期上下文关系并保持模型的轻量化。为了评估模型在真实算力场景中的检测性能,将其部署在NVIDIA Jetson Xavier Nx平台上,采用NVIDIA TensorRT FP16量化加速,在BDD100K和TT100K测试集上开展推理实验,并与基准模型进行对比,结果显示:(1)检测精度方面,与YOLOv10n和YOLO11n相比,改进模型的mAP@0.5指标分别提升了6.1和7.4个百分点,mAP@0.5:0.95指标分别提升了3.6和4.2个百分点,同时,参数量分别降低了26.1%和34.9%。(2)检测速度方面,改进模型Small和Nano两种版本的推理速度分别达到了29 FPS和35 FPS。实验结果表明:与参考模型相比,改进算法在复杂驾驶环境中的表现更加优异,在检测精度与检测速度之间达到了更好的平衡,适于部署在智能网联汽车的环境感知系统中。 展开更多
关键词 实时目标检测 复杂驾驶环境 DPRT-YOLO 多尺度特征融合 TRANSFORMER
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部