期刊文献+
共找到1,614篇文章
< 1 2 81 >
每页显示 20 50 100
基于深层条件随机场的生物医学命名实体识别 被引量:18
1
作者 孙晓 孙重远 任福继 《模式识别与人工智能》 EI CSCD 北大核心 2016年第11期997-1008,共12页
生物医学命名实体识别是从生物医学文献中获取关键知识的基础与关键任务.文中提出基于深层条件随机场的生物医学命名实体识别方法,构建多层结构的深层条件随机场模型,在不同层次的特征上结合增量式学习策略,选择最优特征集.最后通过基... 生物医学命名实体识别是从生物医学文献中获取关键知识的基础与关键任务.文中提出基于深层条件随机场的生物医学命名实体识别方法,构建多层结构的深层条件随机场模型,在不同层次的特征上结合增量式学习策略,选择最优特征集.最后通过基于〈全名,缩写〉对和基于领域信息的错误纠正算法,进一步修正识别结果.在生物医学命名实体评测语料JNLPBA上的实验验证文中方法的有效性. 展开更多
关键词 生物医学命名实体识别 深层条件随机场 增量式学习 错误纠正算法
在线阅读 下载PDF
基于CNN-BLSTM-CRF模型的生物医学命名实体识别 被引量:132
2
作者 李丽双 郭元凯 《中文信息学报》 CSCD 北大核心 2018年第1期116-122,共7页
命名实体识别是自然语言处理任务的重要步骤。近年来,不依赖人工特征的神经网络在新闻等通用领域命名实体识别方面表现出了很好的性能。然而在生物医学领域,许多实验表明基于领域知识的人工特征对于神经网络模型的结果影响很大。因此,... 命名实体识别是自然语言处理任务的重要步骤。近年来,不依赖人工特征的神经网络在新闻等通用领域命名实体识别方面表现出了很好的性能。然而在生物医学领域,许多实验表明基于领域知识的人工特征对于神经网络模型的结果影响很大。因此,如何在不依赖人工特征的情况下获得较好的生物医学命名实体识别性能是有待解决的问题。该文提出一种基于CNN-BLSTM-CRF的神经网络模型。首先利用卷积神经网络(CNN)训练出单词的具有形态特征的字符级向量,并从大规模背景语料训练中得到具有语义特征信息的词向量,然后将二者进行组合作为输入,再构建适合生物医学命名实体识别的BLSTM-CRF深层神经网络模型。实验结果表明,不依赖任何人工特征,该文方法在BiocreativeⅡGM和JNLPBA2004生物医学语料上都达到了目前最好的结果,F-值分别为89.09%和74.40%。 展开更多
关键词 生物医学命名实体识别 LSTM CNN
在线阅读 下载PDF
基于CRFs的多策略生物医学命名实体识别 被引量:2
3
作者 马瑞民 马民艳 《齐齐哈尔大学学报(自然科学版)》 2011年第1期39-42,共4页
生物医学命名实体识别是生物医学文本挖掘的基本任务。机器学习方法是生物医学命名实体研究的主流方法,选取有效的机器学习算法和采取有效的识别策略是提高生物医学命名实体识别性能的关键,鉴于条件随机域算法在自然语言处理领域的优势... 生物医学命名实体识别是生物医学文本挖掘的基本任务。机器学习方法是生物医学命名实体研究的主流方法,选取有效的机器学习算法和采取有效的识别策略是提高生物医学命名实体识别性能的关键,鉴于条件随机域算法在自然语言处理领域的优势,本文采用该算法并结合多种识别策略对生物医学命名实体识别进行研究。实验取得了良好的效果,F测度达到了70.52%,与其它相关系统比较,识别性能有了明显提高。 展开更多
关键词 生物医学命名实体识别 特征提取 缩写词识别 条件随机域
在线阅读 下载PDF
基于分类器串联融合的生物医学命名实体识别
4
作者 马瑞民 马民艳 王浩畅 《大庆石油学院学报》 CAS 北大核心 2011年第2期91-94,122,共4页
鉴于生物医学命名实体识别的多数模型使用单机器学习算法时识别效果不好,提出一种基于条件随机域(CRFs)与最大熵(Maxent)分类器融合的方法,利用基分类器之间的相关性和互补性,结合有效的特征集合,进行再学习,得到融合模型.实验表明,该... 鉴于生物医学命名实体识别的多数模型使用单机器学习算法时识别效果不好,提出一种基于条件随机域(CRFs)与最大熵(Maxent)分类器融合的方法,利用基分类器之间的相关性和互补性,结合有效的特征集合,进行再学习,得到融合模型.实验表明,该模型的识别性能与单一分类器和JNLPBA专题会议相关的系统比较,取得很好成绩,F测度达到70.7%,证明该融合方法有效. 展开更多
关键词 条件随机域 最大熵 分类器融合 特征提取 生物医学命名实体识别
在线阅读 下载PDF
结合CRF的边界组合生物医学命名实体识别 被引量:8
5
作者 扈应 陈艳平 +1 位作者 黄瑞章 秦永彬 《计算机应用研究》 CSCD 北大核心 2021年第7期2025-2031,共7页
许多的生物医学命名实体识别(Bio-NER)工作都集中于提取扁平化的实体,而忽略了嵌套实体和不连续实体。此外,大多数生物医学命名实体都未遵循统一的命名法,具有许多典型的领域特征,但其使用效率较低。为此提出一种结合CRF的边界组合命名... 许多的生物医学命名实体识别(Bio-NER)工作都集中于提取扁平化的实体,而忽略了嵌套实体和不连续实体。此外,大多数生物医学命名实体都未遵循统一的命名法,具有许多典型的领域特征,但其使用效率较低。为此提出一种结合CRF的边界组合命名实体识别方法,有效地利用了生物医学实体特征。该方法包括边界检测、边界组合和实体筛选三个步骤。首先使用神经网络模型和基于特征的CRF模型识别实体开始和结束边界,然后经过边界组合产生候选实体,最后使用多输入的卷积神经网络模型对候选实体进行筛选并分类。实验表明,该方法能够有效地识别生物医学文献中的嵌套和不连续实体,在GENIA数据集上达到81.89%的F值。 展开更多
关键词 生物医学命名实体识别 深度学习 条件随机场 信息抽取
在线阅读 下载PDF
基于词义增强的生物医学命名实体识别方法 被引量:4
6
作者 陈梦萱 陈艳平 +2 位作者 扈应 黄瑞章 秦永彬 《计算机工程》 CAS CSCD 北大核心 2023年第10期305-312,共8页
生物医学命名实体识别(BioNER)是生物医学文本挖掘的核心任务之一,能够为下游任务提供有力支撑。与通用领域相比,生物医学数据中存在更多的未登录词,现有BioNER方法通常将未登录词拆分为语素进行表示学习,这种方法缓解了未登录词表示信... 生物医学命名实体识别(BioNER)是生物医学文本挖掘的核心任务之一,能够为下游任务提供有力支撑。与通用领域相比,生物医学数据中存在更多的未登录词,现有BioNER方法通常将未登录词拆分为语素进行表示学习,这种方法缓解了未登录词表示信息不足的问题,但是破坏了单词的内部信息,对语素进行标签预测时容易出现标签不一致和跨实体标签问题。此外,将单词分割为语素导致句子长度变长,加重了训练中存在的梯度消失问题。提出一种通过BiLSTM-Biaffine结构进行词义增强的BioNER方法。通过BioBERT预训练模型获取语素表示信息,使用BiLSTM-Biaffine进行词义增强,在单词层面利用BiLSTM分别获取语素的前向和后向序列信息,采用Biaffine注意力机制增强其关联信息并重新融合为单词表示,最后通过BiLSTM-CRF模型获取输入句子的标签序列。实验结果表明,在数据集BC2GM、NCBI-Disease、BC5CDR-chem和JNLPBA上,该方法的F1值分别达到84.94%、89.07%、92.14%和74.57%,与主流序列标注模型MTM-CW、MT-BioNER等相比平均分别提高了2.99、1.84、3.09和1.03个百分点,验证了所提方法在BioNER任务中的有效性。 展开更多
关键词 生物医学命名实体识别 语素 词义增强 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
生物医学命名实体识别的研究与进展 被引量:25
7
作者 郑强 刘齐军 +1 位作者 王正华 朱云平 《计算机应用研究》 CSCD 北大核心 2010年第3期811-815,832,共6页
为直接高效地获取文献中的知识,命名实体识别用来识别文本中具有特定意义的实体。这是应用文本挖掘技术自动获取知识的关键的第一步,因此受到日益广泛的关注。主要从评测方法、特征选择、机器学习方法和后期处理等方面介绍了近年来生物... 为直接高效地获取文献中的知识,命名实体识别用来识别文本中具有特定意义的实体。这是应用文本挖掘技术自动获取知识的关键的第一步,因此受到日益广泛的关注。主要从评测方法、特征选择、机器学习方法和后期处理等方面介绍了近年来生物医学命名实体识别方面的主要研究方法及成果,并对目前各方面存在的问题进行了分析和讨论,最后对该领域的研究前景进行了展望。 展开更多
关键词 命名实体识别 文本挖掘 特征选择 机器学习
在线阅读 下载PDF
面向生物医学命名实体识别的多Agent元学习框架 被引量:6
8
作者 王浩畅 李钰 赵铁军 《计算机学报》 EI CSCD 北大核心 2010年第7期1256-1262,共7页
生物医学命名实体识别是生物医学数据挖掘的基本任务.文中提出了一种将多Agent系统和元学习方法相结合的多Agent元学习框架,应用于生物医学命名实体识别.基层多个学习Agent分别识别不同类型的生物医学命名实体,并通过相关学习Agent之间... 生物医学命名实体识别是生物医学数据挖掘的基本任务.文中提出了一种将多Agent系统和元学习方法相结合的多Agent元学习框架,应用于生物医学命名实体识别.基层多个学习Agent分别识别不同类型的生物医学命名实体,并通过相关学习Agent之间的通信来交换有益信息以调节个体Agent的行为提高其学习性能,元层Agent综合决策基层学习Agent的学习结果以获得最终的识别结果.元层Agent和基层学习Agent通过局部特征选择法选择适合不同实体类别的敏感特征集合提高了总体识别性能尤其是小类别识别的性能.文中提出的方法有效改善了传统的单一学习模型和全局特征选择方法不能兼顾各类别命名实体识别性能的不足.实验结果表明,文中提出的全新方法在生物医学命名实体识别上取得了优越的性能,在JNLPBA2004测试语料上获得了77.5%的F测度值. 展开更多
关键词 命名实体识别 多Agent元学习框架 元层Agent 基层学习Agent 局部特征选择
在线阅读 下载PDF
基于字符级特征自适应的生物医学命名实体识别 被引量:5
9
作者 于祥钦 王香 +1 位作者 李智强 徐贤 《小型微型计算机系统》 CSCD 北大核心 2023年第9期1876-1883,共8页
生物医学领域新增实体数量和类型迅速增加,在预训练词表容量有限的情况下,字符嵌入可以在一定程度上解决未登录词问题,单一的字符级特征提取器所提取字符嵌入的潜在表征有一定局限性.针对此问题,提出一种字符级特征自适应融合的生物医... 生物医学领域新增实体数量和类型迅速增加,在预训练词表容量有限的情况下,字符嵌入可以在一定程度上解决未登录词问题,单一的字符级特征提取器所提取字符嵌入的潜在表征有一定局限性.针对此问题,提出一种字符级特征自适应融合的生物医学命名实体模型.首先利用卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)提取文本的字符向量,训练过程中动态计算文本单词两种字符向量的权重并进行拼接,使得模型在字符粒度上更加充分的利用信息,并加入词性信息和组块分析作为额外特征;将词向量、字符级特征和额外特征拼接后输入到BiLSTM-CRF神经网络模型进行训练.结果表明,所提模型在NCBI-disease和BiocreativeⅡGM语料库上平均F1值达到87.14%和81.04%,有效的提升了生物医学命名实体识别的效果. 展开更多
关键词 生物医学命名实体识别 双向长短期记忆网络 卷积神经网络 字符级特征 自适应
在线阅读 下载PDF
一种松耦合的生物医学命名实体识别算法 被引量:2
10
作者 胡俊锋 陈蓉 +2 位作者 陈源 陈浩 于中华 《计算机应用》 CSCD 北大核心 2007年第11期2866-2869,共4页
生物医学命名实体识别(Bio-NER)是生物医学文献挖掘利用的基础工作。针对目前Bio-NER存在的困难和问题,提出了松耦合的Bio-NER算法LCA,该算法利用启发规则过滤器、词性模板匹配及改良的隐马尔科夫模型(HMM)识别生物医学命名实体。在GENI... 生物医学命名实体识别(Bio-NER)是生物医学文献挖掘利用的基础工作。针对目前Bio-NER存在的困难和问题,提出了松耦合的Bio-NER算法LCA,该算法利用启发规则过滤器、词性模板匹配及改良的隐马尔科夫模型(HMM)识别生物医学命名实体。在GENIA corpus3.02语料库上进行的实验表明,LCA可以达到80%的准确率和89%的召回率,优于相关工作中的结果。 展开更多
关键词 生物医学命名实体 启发规则过滤器 词性模板匹配 词根匹配 隐马尔科夫模型 松耦合算法
在线阅读 下载PDF
面向生物医学命名实体识别和规范化的多粒度特征融合 被引量:1
11
作者 刘彤 石昌岭 倪维健 《计算机系统应用》 2024年第11期237-246,共10页
为了从生物医学文献中提取丰富的实体信息及其规范化表达,提出了一种面向生物医学命名实体和规范化的多粒度特征融合方法 (multi-granularity feature fusion approach for biomedical named entity recognition and normalization, MGF... 为了从生物医学文献中提取丰富的实体信息及其规范化表达,提出了一种面向生物医学命名实体和规范化的多粒度特征融合方法 (multi-granularity feature fusion approach for biomedical named entity recognition and normalization, MGFFA).通过整合字符级、词级、概念级的文本信息,显著增强了模型的学习能力.同时还包含一个用于存储和综合不同层次信息的记忆库,以实现对实体及其规范化标签间复杂关系的深入理解.通过预训练模型的配合使用, MGFFA不仅捕捉了文本的粗粒度语义表示,还细致分析了构词层面的特征,从而全面提升了对长跨度实体的识别准确率.在NCBI和NC5CDR数据集上的实验结果显示,该模型在总体上优于其他基线模型. 展开更多
关键词 生物医学命名实体识别 生物医学命名实体规范化 多任务学习 记忆网络
在线阅读 下载PDF
生物医学命名实体识别研究现状及中文生物医学命名实体识别难点与意义综述 被引量:6
12
作者 潘璀然 施维 +3 位作者 薛均 王青华 王理 董建成 《医学信息学杂志》 CAS 2018年第3期53-59,共7页
介绍国内外生物医学命名实体识别的研究现状,详细阐述生物医学命名实体识别的技术方法,包括基于词典和规则的方法、基于机器学习的方法、混合方法和神经网络方法以及相关测评组织和标准,总结中文生物医学命名实体识别难点和意义。
关键词 中文 生物医学 命名实体识别
暂未订购
基于BERT和BiLSTM-CRF的生物医学命名实体识别 被引量:30
13
作者 许力 李建华 《计算机工程与科学》 CSCD 北大核心 2021年第10期1873-1879,共7页
在生物医学领域,以静态词向量表征语义的命名实体识别方法准确率不高。针对此问题,提出一种将预训练语言模型BERT和BiLSTM相结合应用于生物医学命名实体识别的模型。首先使用BERT进行语义提取生成动态词向量,并加入词性分析、组块分析... 在生物医学领域,以静态词向量表征语义的命名实体识别方法准确率不高。针对此问题,提出一种将预训练语言模型BERT和BiLSTM相结合应用于生物医学命名实体识别的模型。首先使用BERT进行语义提取生成动态词向量,并加入词性分析、组块分析特征提升模型精度;其次,将词向量送入BiLSTM模型进一步训练,以获取上下文特征;最后通过CRF进行序列解码,输出概率最大的结果。该模型在BC4CHEMD、BC5CDR-chem和NCBI-disease数据集上的平均F1值达到了89.45%。实验结果表明,提出的模型有效地提升了生物医学命名实体识别的准确率。 展开更多
关键词 生物医学 命名实体识别 预训练语言模型 词性分析 组块分析
在线阅读 下载PDF
基于结合多头注意力机制BiGRU网络的生物医学命名实体识别 被引量:10
14
作者 徐凯 王崎 +3 位作者 李振彰 康培培 谢峰 刘文印 《计算机应用与软件》 北大核心 2020年第5期151-155,232,共6页
生物医学命名实体识别(BNER)对促进医学信息学研究具有重要意义。针对现有方法识别精度和效率低,特别是不能很好识别组成复杂和罕见的生物医学名称问题,提出一种基于词典注意力双向门控循环单元神经网络和CRF(DABGC)BNER的方法。通过一... 生物医学命名实体识别(BNER)对促进医学信息学研究具有重要意义。针对现有方法识别精度和效率低,特别是不能很好识别组成复杂和罕见的生物医学名称问题,提出一种基于词典注意力双向门控循环单元神经网络和CRF(DABGC)BNER的方法。通过一种高效多模态匹配方法对生物医学词典进行高效匹配,使用双向GRU网络输出包含上下文信息的隐状态。引入多头注意力机制解析词之间的联系,通过权重的方式将词典匹配结果和注意力机制进行结合,融合CRF计算出最优标签序列。在NCBI疾病和BC5CDR化学数据集上,DABGC获得最高F1分数分别为0.868和0.921。 展开更多
关键词 命名实体识别 深度学习 医学词典
在线阅读 下载PDF
基于句法依存分析的图网络生物医学命名实体识别 被引量:3
15
作者 许力 李建华 《计算机应用》 CSCD 北大核心 2021年第2期357-362,共6页
现有的生物医学命名实体识别方法没有利用语料中的句法信息,准确率不高。针对这一问题,提出基于句法依存分析的图网络生物医学命名实体识别模型。首先利用卷积神经网络(CNN)生成字符向量并将其与词向量拼接,然后将其送入双向长短期记忆(... 现有的生物医学命名实体识别方法没有利用语料中的句法信息,准确率不高。针对这一问题,提出基于句法依存分析的图网络生物医学命名实体识别模型。首先利用卷积神经网络(CNN)生成字符向量并将其与词向量拼接,然后将其送入双向长短期记忆(BiLSTM)网络进行训练;其次以句子为单位对语料进行句法依存分析,并构建邻接矩阵;最后将BiLSTM的输出和通过句法依存分析构建的邻接矩阵送入图卷积网络(GCN)进行训练,并引入图注意力机制优化邻接节点的特征权重得到模型输出。所提模型在JNLPBA和NCBI-disease数据集上的F1值分别达到了76.91%和87.80%,相比基准模型分别提升了2.62和1.66个百分点。实验结果证明,提出的方法能有效提升模型在生物医学命名实体识别任务上的表现。 展开更多
关键词 生物医学 命名实体识别 双向长短期记忆网络 图卷积网络 句法依存分析 图注意力机制
在线阅读 下载PDF
PU场景下的生物医学命名实体识别算法研究 被引量:1
16
作者 高冰涛 翟振刚 刘斌 《智能物联技术》 2019年第1期22-28,47,共8页
传统的生物医学命名实体识别方法需要大量的标注数据样本,但是在实际应用中标注样本代价高昂。为降低生物医学命名实体识别对标注样本的需求,本文提出通过使用PU学习中的两步法方法,将生物医学命名实体识别问题转化为PU场景下的命名实... 传统的生物医学命名实体识别方法需要大量的标注数据样本,但是在实际应用中标注样本代价高昂。为降低生物医学命名实体识别对标注样本的需求,本文提出通过使用PU学习中的两步法方法,将生物医学命名实体识别问题转化为PU场景下的命名实体识别问题。在第一步中分别使用1-DNF、Spy、NB和Rocchio算法在未标注数据中抽取强负例,然后在已有的正例数据和强负例数据的基础上构建隐马尔可夫模型,最后对待分类数据进行命名实体识别。在GENIA语料库上的实验结果显示,在标注数据较少的情况下,通过使用PU学习方法的两步法构建分类模型,其性能显著优于直接使用标注数据构建的分类模型,同时降低了人工标注数据的成本。 展开更多
关键词 正例未标注学习 隐马尔科夫模型 命名实体识别 文本挖掘
在线阅读 下载PDF
生物医学文本中命名实体识别研究 被引量:6
17
作者 张向喆 王明辉 +2 位作者 赵洪波 王起山 潘玉春 《上海交通大学学报(农业科学版)》 2010年第2期132-139,共8页
生物命名实体识别是对生物医学文本进行信息处理的关键技术。准确的生物命名实体识别工具是对文本进行后续工作如信息提取或文本分类等的先决条件。经过多年的研究,生命科学领域生物命名实体识别取得了一定的进展。本文总结了生物命名... 生物命名实体识别是对生物医学文本进行信息处理的关键技术。准确的生物命名实体识别工具是对文本进行后续工作如信息提取或文本分类等的先决条件。经过多年的研究,生命科学领域生物命名实体识别取得了一定的进展。本文总结了生物命名实体的特征,分析了基于不同方法的生物命名实体识别系统,及生物命名实体识别方法在提取蛋白质互作等方面的丰富应用,并展望了未来的发展趋势。 展开更多
关键词 生物信息学 生物命名实体识别 生物医学文献
在线阅读 下载PDF
基于SVM的生物医学命名实体的识别 被引量:18
18
作者 王浩畅 赵铁军 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期570-574,共5页
命名实体识别是生物医学数据挖掘的基本任务.文章使用了基于支持向量机的方法对生物医学文本中的命名实体进行了识别,系统中结合了丰富的特征集,包括局部特征,全文特征和外部资源特征,对不同的特征和不同的特征组合对系统的贡献进... 命名实体识别是生物医学数据挖掘的基本任务.文章使用了基于支持向量机的方法对生物医学文本中的命名实体进行了识别,系统中结合了丰富的特征集,包括局部特征,全文特征和外部资源特征,对不同的特征和不同的特征组合对系统的贡献进行了评测和实验.为了进一步提高系统的性能,还引入了缩写词识别模块和过滤器模块.实验结果表明,该方法对生物医学文本中命名实体的识别取得到了较好的结果. 展开更多
关键词 命名实体识别 SVM 特征选择 缩写词
在线阅读 下载PDF
基于感知器的生物医学命名实体边界识别算法 被引量:2
19
作者 胡俊锋 陈浩 +2 位作者 陈蓉 谭斌 于中华 《计算机应用》 CSCD 北大核心 2007年第12期3026-3028,3031,共4页
在生物信息学领域内生物医学命名实体识别(Bio-NER)是生物医学文献挖掘、利用的基础工作,由于实体边界识别的困难导致目前Bio-NER效率较低,因此提出了基于感知器的实体边界识别算法,该算法采用随机梯度下降算法训练权重,利用token过滤器... 在生物信息学领域内生物医学命名实体识别(Bio-NER)是生物医学文献挖掘、利用的基础工作,由于实体边界识别的困难导致目前Bio-NER效率较低,因此提出了基于感知器的实体边界识别算法,该算法采用随机梯度下降算法训练权重,利用token过滤器、n-gram模型及实体过滤器实现生物医学命名实体边界识别。在GENIA corpus 3.02语料库上进行的实验表明,该算法可以达到71.5%的准确率和79.2%的召回率,与相关工作相比均有一定提高。另外算法相对简单,识别算法速度较快,易在生产中应用。 展开更多
关键词 生物医学命名实体 感知器 N-GRAM模型 实体边界识别
在线阅读 下载PDF
生物医学文本中命名实体识别的智能化方法 被引量:2
20
作者 王浩畅 赵铁军 +1 位作者 刘延力 于浩 《北京邮电大学学报》 EI CAS CSCD 北大核心 2006年第z2期54-58,共5页
介绍了使用机器学习方法进行生物医学文本命名实体识别的技术,包括Generalized Winnow算法、支持向量机方法和条件随机域模型.根据学习算法的特点,识别过程中使用了丰富的特征集,包括局部特征、全文特征及外部资源特征.各种类型特征的... 介绍了使用机器学习方法进行生物医学文本命名实体识别的技术,包括Generalized Winnow算法、支持向量机方法和条件随机域模型.根据学习算法的特点,识别过程中使用了丰富的特征集,包括局部特征、全文特征及外部资源特征.各种类型特征的优化组合、识别结果的后处理,包括缩写词识别、嵌套词识别及边界校正等都提升了命名实体识别系统的性能.实验结果表明,通过上述策略的应用,系统取得了很好的识别结果. 展开更多
关键词 命名实体识别 特征选择 支持向量机 条件随机域
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部