期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于时空解耦和区域鲁棒性增强的半监督视频目标分割方法
1
作者 陈鹏宇 聂秀山 +1 位作者 李南君 李拓 《计算机应用》 北大核心 2025年第5期1379-1386,共8页
针对半监督视频目标分割(VOS)领域中基于记忆的方法存在由于目标交互造成的物体遮挡以及背景中类似对象或噪声的干扰等问题,提出一种基于时空解耦和区域鲁棒性增强的半监督VOS方法。首先,构建一个结构化Transformer架构去除所有像素共... 针对半监督视频目标分割(VOS)领域中基于记忆的方法存在由于目标交互造成的物体遮挡以及背景中类似对象或噪声的干扰等问题,提出一种基于时空解耦和区域鲁棒性增强的半监督VOS方法。首先,构建一个结构化Transformer架构去除所有像素共有的特征信息,突出每个像素之间的差异,深入挖掘视频帧中目标的关键特征;其次,解耦当前帧与长期记忆帧之间的相似性,区分为时空相关性和目标重要性2个关键维度,使得对像素级时空特征和目标特征的分析更精确,从而解决由目标交互造成的物体遮挡问题;最后,设计一个区域条形注意力(RSA)模块,利用长期记忆中的目标位置信息增强对前景区域的关注度并抑制背景噪声。实验结果表明,所提方法在DAVIS 2017验证集上比重新训练的AOT(Associating Objects with Transformers)模型的J&F指标高1.7个百分点,在YouTube-VOS2019验证集上比重新训练的AOT模型的总分高1.6个百分点。可见所提方法可有效解决半监督VOS存在的问题。 展开更多
关键词 视频目标分割 时空解耦 半监督学习 TRANSFORMER 条形注意力
在线阅读 下载PDF
基于边界显著性的超声颈动脉内中膜的智能提取 被引量:1
2
作者 杨继锋 韦浩 +3 位作者 熊飞 黄庆华 李乐 周光泉 《生物医学工程研究》 2023年第4期350-355,共6页
为进一步提高超声颈动脉内中膜提取和测量的准确性,本研究基于U-Net模型提出了改进的分割网络,以实现对颈动脉内中膜的精准提取。首先,在网络中加入条形注意力模块,利用先验形状和解剖信息以解决传统卷积感受野受限的问题;此外,结合后... 为进一步提高超声颈动脉内中膜提取和测量的准确性,本研究基于U-Net模型提出了改进的分割网络,以实现对颈动脉内中膜的精准提取。首先,在网络中加入条形注意力模块,利用先验形状和解剖信息以解决传统卷积感受野受限的问题;此外,结合后处理细化模块以更好地减少图像中噪声和伪影干扰,通过从内中膜的固有膜形状特征中学习,从而实现校正估计误差。在采集的1000张颈动脉血管超声图像数据库中进行测试,分割Dice达到0.932,内中膜厚度的平均误差为0.914个像素。本研究有望为动脉疾病的自动分析提供重要的参考依据。 展开更多
关键词 图像分割 颈动脉内中膜 条形注意力 自编码器 心脑血管
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部