In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted valu...In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted value of the windfarm. When the measured windfarm output is larger than the predicted value, the system is pumping up water with surplus power. When the windfarm output is smaller than the predicted value, the system is filling up lack power by hydro generator. Also, since hydro generator works with a start-up delay time, output shortage occurs at this time. To improve output shortage at the time, we estimate the time below the predicted value by a statistical model. As the result, the system succeeded in stabilizing the power and improving the start-up delay time of the hydro generator.展开更多
文摘In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted value of the windfarm. When the measured windfarm output is larger than the predicted value, the system is pumping up water with surplus power. When the windfarm output is smaller than the predicted value, the system is filling up lack power by hydro generator. Also, since hydro generator works with a start-up delay time, output shortage occurs at this time. To improve output shortage at the time, we estimate the time below the predicted value by a statistical model. As the result, the system succeeded in stabilizing the power and improving the start-up delay time of the hydro generator.